# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides metrics used by PTN.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import xrange import tensorflow as tf slim = tf.contrib.slim def add_image_pred_metrics( inputs, outputs, num_views, upscale_factor): """Computes the image prediction metrics. Args: inputs: Input dictionary of the deep rotator model (model_rotator.py). outputs: Output dictionary of the deep rotator model (model_rotator.py). num_views: An integer scalar representing the total number of different viewpoints for each object in the dataset. upscale_factor: A float scalar representing the number of pixels per image (num_channels x image_height x image_width). Returns: names_to_values: A dictionary representing the current value of the metric. names_to_updates: A dictionary representing the operation that accumulates the error from a batch of data. """ names_to_values = dict() names_to_updates = dict() for k in xrange(num_views): tmp_value, tmp_update = tf.contrib.metrics.streaming_mean_squared_error( outputs['images_%d' % (k + 1)], inputs['images_%d' % (k + 1)]) name = 'image_pred/rnn_%d' % (k + 1) names_to_values.update({name: tmp_value * upscale_factor}) names_to_updates.update({name: tmp_update}) return names_to_values, names_to_updates def add_mask_pred_metrics( inputs, outputs, num_views, upscale_factor): """Computes the mask prediction metrics. Args: inputs: Input dictionary of the deep rotator model (model_rotator.py). outputs: Output dictionary of the deep rotator model (model_rotator.py). num_views: An integer scalar representing the total number of different viewpoints for each object in the dataset. upscale_factor: A float scalar representing the number of pixels per image (num_channels x image_height x image_width). Returns: names_to_values: A dictionary representing the current value of the metric. names_to_updates: A dictionary representing the operation that accumulates the error from a batch of data. """ names_to_values = dict() names_to_updates = dict() for k in xrange(num_views): tmp_value, tmp_update = tf.contrib.metrics.streaming_mean_squared_error( outputs['masks_%d' % (k + 1)], inputs['masks_%d' % (k + 1)]) name = 'mask_pred/rnn_%d' % (k + 1) names_to_values.update({name: tmp_value * upscale_factor}) names_to_updates.update({name: tmp_update}) return names_to_values, names_to_updates def add_volume_iou_metrics(inputs, outputs): """Computes the per-instance volume IOU. Args: inputs: Input dictionary of the voxel generation model. outputs: Output dictionary returned by the voxel generation model. Returns: names_to_values: metrics->values (dict). names_to_updates: metrics->ops (dict). """ names_to_values = dict() names_to_updates = dict() labels = tf.greater_equal(inputs['voxels'], 0.5) predictions = tf.greater_equal(outputs['voxels_1'], 0.5) labels = (2 - tf.to_int32(labels)) - 1 predictions = (3 - tf.to_int32(predictions) * 2) - 1 tmp_values, tmp_updates = tf.metrics.mean_iou( labels=labels, predictions=predictions, num_classes=3) names_to_values['volume_iou'] = tmp_values * 3.0 names_to_updates['volume_iou'] = tmp_updates return names_to_values, names_to_updates