Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from src.utils.ingest_text import create_vector_database | |
from src.utils.ingest_image import extract_and_store_images | |
from src.utils.text_qa import qa_bot | |
from src.utils.image_qa import query_and_print_results | |
import nest_asyncio | |
nest_asyncio.apply() | |
from dotenv import load_dotenv | |
load_dotenv() | |
def get_answer(query, chain): | |
try: | |
response = chain.invoke(query) | |
return response['result'] | |
except Exception as e: | |
st.error(f"Error in get_answer: {e}") | |
return None | |
st.title("MULTIMODAL DOC QA") | |
uploaded_file = st.file_uploader("File upload", type="pdf") | |
if uploaded_file is not None: | |
# Save the uploaded file to a temporary location | |
temp_file_path = os.path.join("temp", uploaded_file.name) | |
os.makedirs("temp", exist_ok=True) # Ensure the temp directory exists | |
with open(temp_file_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
# Get the absolute path of the saved file | |
path = os.path.abspath(temp_file_path) | |
st.write(f"File saved to: {path}") | |
print(path) | |
st.write("Document uploaded successfully!") | |
if st.button("Start Processing"): | |
if uploaded_file is not None: | |
with st.spinner("Processing"): | |
try: | |
client = create_vector_database(path) | |
image_vdb = extract_and_store_images(path) | |
chain = qa_bot(client) | |
st.session_state['chain'] = chain # Store chain in session state | |
st.session_state['image_vdb'] = image_vdb # Store image_vdb in session state | |
st.success("Processing complete.") | |
except Exception as e: | |
st.error(f"Error during processing: {e}") | |
else: | |
st.error("Please upload a file before starting processing.") | |
if user_input := st.chat_input("User Input"): | |
if 'chain' in st.session_state and 'image_vdb' in st.session_state: | |
chain = st.session_state['chain'] | |
image_vdb = st.session_state['image_vdb'] | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
with st.spinner("Generating Response..."): | |
response = get_answer(user_input, chain) | |
if response: | |
st.markdown(response) | |
try: | |
query_and_print_results(image_vdb, user_input) | |
except Exception as e: | |
st.error(f"Error querying image database: {e}") | |
else: | |
st.error("Failed to generate response.") | |
else: | |
st.error("Please start processing before entering user input.") | |