File size: 956 Bytes
e2c9c4a
64a2354
 
 
3957c60
7923f38
e4071b9
e2c9c4a
0e6fd2c
 
64a2354
 
 
 
 
0e6fd2c
 
 
 
64a2354
8ab44c3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import gradio as gr
import nltk
from nltk.corpus import stopwords
import joblib

nltk.download('punkt')

# Load the trained model and vectorizer outside the function for better performance
loaded_classifier = joblib.load("bible_or_talmud_model.pkl")
vectorizer = joblib.load("bible_or_talmud_vectorizer.pkl")

def parse_text(new_text):
    new_text_tfidf = vectorizer.transform([new_text])
    prediction = loaded_classifier.predict(new_text_tfidf)
    probabilities = loaded_classifier.predict_proba(new_text_tfidf)
    confidence_score = max(probabilities[0])
    labels = {0: '讗讞专', 1: '转谞"讱', 2: '转诇诪讜讚 讘讘诇讬'}
    predicted_label = labels[prediction[0]]
    return predicted_label, confidence_score

iface = gr.Interface(fn=parse_text, inputs="text", outputs=["text", "number"], title='讙讬诇讜讬 驻住讜拽讬 讛转谞"讱 讘讗诪爪注讜转 AI', description='讛讝谉 讟拽住讟 讻讚讬 诇住讜讜讙 讗诐 讛讜讗 诪讛转谞"讱 讗讜 诇讗.')
iface.launch()