is-this-bible / app.py
NHLOCAL's picture
Update app.py
e2c9c4a
raw
history blame
817 Bytes
import gradio as gr
import nltk
from nltk.corpus import stopwords
import joblib
# Load the trained model and vectorizer outside the function for better performance
loaded_classifier = joblib.load("is_this_bible_model.pkl")
vectorizer = joblib.load("is_this_bible_vectorizer.pkl")
def parse_text(new_text):
new_text_tfidf = vectorizer.transform([new_text])
prediction = loaded_classifier.predict(new_text_tfidf)
probabilities = loaded_classifier.predict_proba(new_text_tfidf)
confidence_score = probabilities[0, 1]
return '转谞"讱' if prediction[0] == 1 else '讗讞专', confidence_score
iface = gr.Interface(fn=parse_text, inputs="text", outputs=["text", "number"], title="Bible Text Classifier", description='讛讝谉 讟拽住讟 讻讚讬 诇住讜讜讙 讗诐 讛讜讗 诪讛转谞"讱 讗讜 诇讗.')
iface.launch()