NHLOCAL commited on
Commit
64a2354
1 Parent(s): 559fb27
Files changed (3) hide show
  1. app.py +31 -5
  2. requirements.txt +3 -0
  3. try_model_webui.py +0 -35
app.py CHANGED
@@ -1,7 +1,33 @@
1
- import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request
2
+ import nltk
3
+ from nltk.corpus import stopwords
4
+ import joblib
5
 
6
+ app = Flask(__name__)
 
7
 
8
+ # Load the trained model and vectorizer outside the routes for better performance
9
+ loaded_classifier = joblib.load("is_this_bible_model.pkl")
10
+ vectorizer = joblib.load("is_this_bible_vectorizer.pkl")
11
+
12
+ def parse_text(new_text):
13
+ new_text_tfidf = vectorizer.transform([new_text])
14
+ prediction = loaded_classifier.predict(new_text_tfidf)
15
+ probabilities = loaded_classifier.predict_proba(new_text_tfidf)
16
+ confidence_score = probabilities[0, 1]
17
+ return 'תנ"ך' if prediction[0] == 1 else 'אחר', confidence_score
18
+
19
+ @app.route('/', methods=['GET', 'POST'])
20
+ def index():
21
+ prediction = None
22
+ confidence_score = None
23
+ new_text = None
24
+
25
+ if request.method == 'POST':
26
+ new_text = request.form['new_text']
27
+ if new_text:
28
+ prediction, confidence_score = parse_text(new_text)
29
+ return render_template('index.html', new_text=new_text, prediction=prediction, confidence_score=confidence_score)
30
+
31
+
32
+ if __name__ == '__main__':
33
+ app.run(debug=True)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Flask
2
+ nltk
3
+ joblib
try_model_webui.py DELETED
@@ -1,35 +0,0 @@
1
- from flask import Flask, render_template, request
2
- import webbrowser
3
- import nltk
4
- from nltk.corpus import stopwords
5
- import joblib
6
-
7
- app = Flask(__name__)
8
-
9
- # Load the trained model and vectorizer outside the routes for better performance
10
- loaded_classifier = joblib.load("is_this_bible_model.pkl")
11
- vectorizer = joblib.load("is_this_bible_vectorizer.pkl")
12
-
13
- def parse_text(new_text):
14
- new_text_tfidf = vectorizer.transform([new_text])
15
- prediction = loaded_classifier.predict(new_text_tfidf)
16
- probabilities = loaded_classifier.predict_proba(new_text_tfidf)
17
- confidence_score = probabilities[0, 1]
18
- return 'תנ"ך' if prediction[0] == 1 else 'אחר', confidence_score
19
-
20
- @app.route('/', methods=['GET', 'POST'])
21
- def index():
22
- prediction = None
23
- confidence_score = None
24
- new_text = None
25
-
26
- if request.method == 'POST':
27
- new_text = request.form['new_text']
28
- if new_text:
29
- prediction, confidence_score = parse_text(new_text)
30
- return render_template('index.html', new_text=new_text, prediction=prediction, confidence_score=confidence_score)
31
-
32
-
33
- if __name__ == '__main__':
34
- webbrowser.open('http://127.0.0.1:5000/')
35
- app.run(debug=True)