import gradio as gr import copy import random import os import requests import time import sys from huggingface_hub import snapshot_download from llama_cpp import Llama SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese. You are good at speaking English and Chinese. You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information. You are based on SEA model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI. Let's work this out in a step by step way to be sure we have the right answer.\n\n''' SYSTEM_TOKEN = 1587 USER_TOKEN = 2188 BOT_TOKEN = 12435 LINEBREAK_TOKEN = 13 ROLE_TOKENS = { "user": USER_TOKEN, "bot": BOT_TOKEN, "system": SYSTEM_TOKEN } def get_message_tokens(model, role, content): message_tokens = model.tokenize(content.encode("utf-8")) message_tokens.insert(1, ROLE_TOKENS[role]) message_tokens.insert(2, LINEBREAK_TOKEN) message_tokens.append(model.token_eos()) return message_tokens def get_system_tokens(model): system_message = {"role": "system", "content": SYSTEM_PROMPT} return get_message_tokens(model, **system_message) repo_name = "Cran-May/OpenSLIDE" model_name = "SLIDE.0.1.gguf" snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) model = Llama( model_path=model_name, n_ctx=2000, n_parts=1, ) max_new_tokens = 1500 def user(message, history): new_history = history + [[message, None]] return "", new_history def bot( history, system_prompt, top_p, top_k, temp ): tokens = get_system_tokens(model)[:] tokens.append(LINEBREAK_TOKEN) for user_message, bot_message in history[:-1]: message_tokens = get_message_tokens(model=model, role="user", content=user_message) tokens.extend(message_tokens) if bot_message: message_tokens = get_message_tokens(model=model, role="bot", content=bot_message) tokens.extend(message_tokens) last_user_message = history[-1][0] message_tokens = get_message_tokens(model=model, role="user", content=last_user_message) tokens.extend(message_tokens) role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN] tokens.extend(role_tokens) generator = model.generate( tokens, top_k=top_k, top_p=top_p, temp=temp ) partial_text = "" for i, token in enumerate(generator): if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens): break partial_text += model.detokenize([token]).decode("utf-8", "ignore") history[-1][1] = partial_text yield history with gr.Blocks( theme=gr.themes.Soft() ) as demo: gr.Markdown( f"""