File size: 12,710 Bytes
4231e0d 355d58d 4231e0d 355d58d 4231e0d 355d58d 4231e0d 355d58d 4231e0d 355d58d 4231e0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import logging
import os
import uuid
import gradio as gr
from llmriddles.questions import QuestionExecutor
from llmriddles.questions import list_ordered_questions
_QUESTION_SESSIONS = {}
count = 0
_QUESTIONS = list_ordered_questions()
_LANG = os.environ.get('QUESTION_LANG', 'cn')
assert _LANG in ['cn', 'en'], _LANG
_LLM = os.environ.get('QUESTION_LLM', 'chatgpt')
assert _LLM in ['chatgpt', 'chatglm', 'mistral-7b'], _LLM
_LLM_KEY = os.environ.get('QUESTION_LLM_KEY', None)
_DEBUG = os.environ.get('DEBUG', 'false').lower() == 'true'
if _DEBUG:
logging.getLogger().setLevel(logging.INFO)
else:
logging.getLogger().setLevel(logging.WARNING)
if _LANG == "cn":
title = "完蛋!我被兮辞包围了"
requirement_ph = """
<h2 style="color: #6d28d9;"> 欢迎来到 Shi-Ci Riddles! </h2>
<h4> 你将通过本游戏对大语言模型产生更深刻的理解。在本游戏中,你需要构造一个提给语言大模型的问题,使得它回复的答案符合题目要求。点击<i>\"下一题\"</i> 即可开始游戏。</h4>
"""
requirement_label = "游戏须知/说明"
question_ph = "你对大语言模型的提问(例如:请你输出1+1=3)"
question_label = "玩家提问栏"
answer_ph = "大语言模型的回答"
answer_label = "大语言模型回答栏"
submit_label = "提交"
next_label = "下一题"
api_ph = "你个人的大语言模型 API Key (例如:ChatGPT)"
api_label = "API key"
predict_label = "结果正确性"
explanation_label = "结果详细解释"
game_cleared_label = "<h2 style='color: #6d28d9;'>祝贺!你已成功通关!</h2>"
correct_label = "正确"
wrong_label = "错误"
api_error_info = "请在提交问题之前先输入你的 API Key"
try_again_label = "再玩一次"
select_label = "选择关卡(投机取巧需谨慎)"
title_markdown = """
<div align="center">
<img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
</div>
<h2 style="text-align: center; color: black;">🎭Shi-Ci Riddles:完蛋!我被兮辞包围了</a></h2>
<strong><h5 align="center">注意:算法模型的输出可能包含一定的随机性。相关结果不代表任何开发者和相关 AI 服务的态度和意见。本项目开发者不对生成结果作任何保证,仅供娱乐。<h5></strong>
"""
tos_markdown = """
### 使用条款
玩家使用本服务须同意以下条款:
该服务是一项探索性研究预览版,仅供非商业用途。它仅提供有限的安全措施,并可能生成令人反感的内容。不得将其用于任何非法、有害、暴力、种族主义等目的。该服务不会收集玩家对话数据以供未来研究之用。
如果您的游玩体验有不佳之处,请发送邮件至 davidchenjingyu@outlook.com ! 我们将不断改进这个项目。
为了获得最佳体验,请使用台式电脑进行此预览版游戏,因为移动设备可能会影响可视化效果。
**版权所有 2023 NLPark。**
"""
elif _LANG == "en":
title = "LLM Riddles: Oops! Rolling in LLM."
requirement_ph = """
<h2 style="color: #6d28d9;">Welcome to LLM Riddles! </h2>
<h4> In this game, you'll gain a deeper understanding of language models. Your challenge is to create a question to ask a language model in a way that the answer it provides meets specific criteria. Click <i>\'Next\'</i> to Start</h4>
"""
requirement_label = "Game Requirements"
question_ph = "Your Question for LLM (e.g. Please print 1+1=3)"
question_label = "Question"
answer_ph = "Answer From LLM"
answer_label = "Answer"
submit_label = "Submit"
next_label = "Next"
api_ph = "Your API Key (e.g. ChatGPT)"
api_label = "API key"
predict_label = "Correctness"
explanation_label = "Explanation"
game_cleared_label = "<h2 style='color: #6d28d9;'>Congratulations!</h2>"
correct_label = "Correct"
wrong_label = "Wrong"
api_error_info = "Please Enter API Key Before Submitting Question."
try_again_label = "Try Again"
select_label = "Select level"
title_markdown = """
<div align="center">
<img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
</div>
<h2 style="text-align: center; color: black;"><a href="https://github.com/OpenDILab/LLMRiddles"> 🎭LLM Riddles: Oops! Rolling in LLM.</a></h2>
<h5 align="center"> If you like our project, please give us a star ✨ on GitHub for latest update <a href="https://github.com/OpenDILab/LLMRiddles"> (Code Link) </a>. Thanks for the interesting idea of the original game <a href="https://www.zhihu.com/people/haoqiang-fan"> author </a>. </h5>
<strong><h5 align="center">Notice: The output is generated by algorithm scheme and may involve some randomness. It does not represent the attitudes and opinions of any developers and AI services in this project. We do not make any guarantees about the generated content.<h5></strong>
"""
tos_markdown = """
### Terms of use
By using this service, players are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please send email to opendilab@pjlab.org.cn if you get any inappropriate answer! We will delete those and keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
**Copyright 2023 OpenDILab.**
"""
else:
raise KeyError("invalid _LANG: {}".format(_LANG))
def _need_api_key():
return (_LLM == 'chatgpt' or _LLM == 'chatglm') and _LLM_KEY is None
def _get_api_key_cfgs(api_key):
if _LLM == 'chatgpt':
return {'api_key': api_key}
elif _LLM == 'chatglm':
return {'api_key': api_key}
else:
return {}
if __name__ == '__main__':
with gr.Blocks(title=title, theme='ParityError/Interstellar') as demo:
gr.Markdown(title_markdown)
with gr.Row():
gr_requirement = gr.HTML(value=requirement_ph, label=requirement_label)
with gr.Row():
with gr.Column():
gr_question = gr.TextArea(placeholder=question_ph, label=question_label)
gr_api_key = gr.Text(placeholder=api_ph, label=api_label, type='password', visible=_need_api_key())
with gr.Row():
gr_submit = gr.Button(submit_label, interactive=False)
gr_next = gr.Button(next_label)
with gr.Row():
gr_select = gr.Radio(
choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
label=select_label
)
with gr.Column():
gr_uuid = gr.Text(value='', visible=False)
gr_predict = gr.Label(label=predict_label)
gr_answer = gr.TextArea(label=answer_label, lines=3)
gr_explanation = gr.TextArea(label=explanation_label, lines=1)
gr.Markdown(tos_markdown)
def _postprocess_question_text(question_text):
if _LANG == 'cn':
idx = question_text.find(',')
question_title = question_text[:idx]
former, latter = question_title.split('(')
question_title = former + ':' + latter[:-1]
question_text = f"<h2 style='color: #6d28d9;'>{question_title}</h2><h4>{question_text[idx+1:]}</h4>"
elif _LANG == 'en':
idx = question_text.find(',')
question_text = f"<h2 style='color: #6d28d9;'>{question_text[:idx]}</h2><h4>{question_text[idx+1:]}</h4>"
return question_text
def _radio_select(uuid_, select_qid):
global count
if not uuid_:
uuid_ = str(uuid.uuid4())
count += 1
logging.info(f'Player {count} starts the game now')
global _QUESTION_SESSIONS
if uuid_ not in _QUESTION_SESSIONS:
_QUESTION_SESSIONS[uuid_] = set(), select_qid
else:
_exists, _ = _QUESTION_SESSIONS[uuid_]
_QUESTION_SESSIONS[uuid_] = _exists, select_qid
executor = QuestionExecutor(_QUESTIONS[select_qid], _LANG)
question_text = _postprocess_question_text(executor.question_text)
return question_text, '', '', {}, '', \
gr.Button(submit_label, interactive=True), \
gr.Button(next_label, interactive=False), \
uuid_
gr_select.select(
_radio_select,
inputs=[gr_uuid, gr_select],
outputs=[
gr_requirement, gr_question, gr_answer,
gr_predict, gr_explanation, gr_submit, gr_next, gr_uuid,
],
)
def _next_question(uuid_):
global count
if not uuid_:
uuid_ = str(uuid.uuid4())
count += 1
logging.info(f'Player {count} starts the game now')
global _QUESTION_SESSIONS
if uuid_ in _QUESTION_SESSIONS:
_exists, _qid = _QUESTION_SESSIONS[uuid_]
else:
_exists, _qid = set(), -1
_qid += 1
_QUESTION_SESSIONS[uuid_] = _exists, _qid
if _qid >= len(_QUESTIONS):
del _QUESTION_SESSIONS[uuid_]
logging.info(f'Player {count} has passed the game now')
return game_cleared_label, '', '', {}, '', \
gr.Button(submit_label, interactive=False), \
gr.Button(try_again_label, interactive=True), \
'', \
gr.Radio(
choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
label=select_label
)
else:
executor = QuestionExecutor(_QUESTIONS[_qid], _LANG)
question_text = _postprocess_question_text(executor.question_text)
return question_text, '', '', {}, '', \
gr.Button(submit_label, interactive=True), \
gr.Button(next_label, interactive=False), \
uuid_, \
gr.Radio(
choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
value=_qid,
label=select_label,
)
gr_next.click(
fn=_next_question,
inputs=[gr_uuid],
outputs=[
gr_requirement, gr_question, gr_answer,
gr_predict, gr_explanation, gr_submit, gr_next,
gr_uuid, gr_select,
],
)
def _submit_answer(qs_text: str, api_key: str, uuid_: str):
global _QUESTION_SESSIONS
if _need_api_key() and not api_key:
raise gr.Error(api_error_info)
_exists, _qid = _QUESTION_SESSIONS[uuid_]
executor = QuestionExecutor(
_QUESTIONS[_qid], _LANG,
llm=_LLM, llm_cfgs=_get_api_key_cfgs(api_key) if _need_api_key() else {'api_key': _LLM_KEY}
)
answer_text, correctness, explanation = executor.check(qs_text)
labels = {correct_label: 1.0} if correctness else {wrong_label: 1.0}
if correctness:
_QUESTION_SESSIONS[uuid_] = (_exists | {_qid}), _qid
return answer_text, labels, explanation, gr.Button(next_label, interactive=True), uuid_
else:
return answer_text, labels, explanation, gr.Button(next_label, interactive=False), uuid_
gr_submit.click(
_submit_answer,
inputs=[gr_question, gr_api_key, gr_uuid],
outputs=[gr_answer, gr_predict, gr_explanation, gr_next, gr_uuid],
)
concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
favicon_path = os.path.join(os.path.dirname(__file__), 'llmriddles', 'assets', 'avatar.png')
demo.queue().launch(max_threads=concurrency, favicon_path=favicon_path, share=True)
|