|
import os |
|
import subprocess |
|
import torch |
|
|
|
import gradio as gr |
|
|
|
from gradio_client.client import DEFAULT_TEMP_DIR |
|
from playwright.sync_api import sync_playwright |
|
from threading import Thread |
|
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer |
|
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension |
|
from typing import List |
|
from PIL import Image |
|
|
|
from transformers.image_transforms import resize, to_channel_dimension_format |
|
|
|
|
|
DEVICE = torch.device("cuda") |
|
PROCESSOR = AutoProcessor.from_pretrained( |
|
"HuggingFaceM4/VLM_WebSight_finetuned", |
|
) |
|
MODEL = AutoModelForCausalLM.from_pretrained( |
|
"HuggingFaceM4/VLM_WebSight_finetuned", |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
).to(DEVICE) |
|
if MODEL.config.use_resampler: |
|
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents |
|
else: |
|
image_seq_len = ( |
|
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size |
|
) ** 2 |
|
BOS_TOKEN = PROCESSOR.tokenizer.bos_token |
|
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids |
|
|
|
|
|
|
|
|
|
def convert_to_rgb(image): |
|
|
|
|
|
if image.mode == "RGB": |
|
return image |
|
|
|
image_rgba = image.convert("RGBA") |
|
background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) |
|
alpha_composite = Image.alpha_composite(background, image_rgba) |
|
alpha_composite = alpha_composite.convert("RGB") |
|
return alpha_composite |
|
|
|
|
|
|
|
def custom_transform(x): |
|
x = convert_to_rgb(x) |
|
x = to_numpy_array(x) |
|
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR) |
|
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255) |
|
x = PROCESSOR.image_processor.normalize( |
|
x, |
|
mean=PROCESSOR.image_processor.image_mean, |
|
std=PROCESSOR.image_processor.image_std |
|
) |
|
x = to_channel_dimension_format(x, ChannelDimension.FIRST) |
|
x = torch.tensor(x) |
|
return x |
|
|
|
|
|
|
|
|
|
IMAGE_GALLERY_PATHS = [ |
|
f"example_images/{ex_image}" |
|
for ex_image in os.listdir(f"example_images") |
|
] |
|
|
|
|
|
def install_playwright(): |
|
try: |
|
subprocess.run(["playwright", "install"], check=True) |
|
print("Playwright installation successful.") |
|
except subprocess.CalledProcessError as e: |
|
print(f"Error during Playwright installation: {e}") |
|
|
|
install_playwright() |
|
|
|
|
|
def add_file_gallery( |
|
selected_state: gr.SelectData, |
|
gallery_list: List[str] |
|
): |
|
return Image.open(gallery_list.root[selected_state.index].image.path) |
|
|
|
|
|
def render_webpage( |
|
html_css_code, |
|
): |
|
with sync_playwright() as p: |
|
browser = p.chromium.launch(headless=True) |
|
context = browser.new_context( |
|
user_agent=( |
|
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0" |
|
" Safari/537.36" |
|
) |
|
) |
|
page = context.new_page() |
|
page.set_content(html_css_code) |
|
page.wait_for_load_state("networkidle") |
|
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png" |
|
_ = page.screenshot(path=output_path_screenshot, full_page=True) |
|
|
|
context.close() |
|
browser.close() |
|
|
|
return Image.open(output_path_screenshot) |
|
|
|
|
|
def model_inference( |
|
image, |
|
): |
|
if image is None: |
|
raise ValueError("`image` is None. It should be a PIL image.") |
|
|
|
inputs = PROCESSOR.tokenizer( |
|
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>", |
|
return_tensors="pt", |
|
add_special_tokens=False, |
|
) |
|
inputs["pixel_values"] = PROCESSOR.image_processor( |
|
[image], |
|
transform=custom_transform |
|
) |
|
inputs = { |
|
k: v.to(DEVICE) |
|
for k, v in inputs.items() |
|
} |
|
|
|
streamer = TextIteratorStreamer( |
|
PROCESSOR.tokenizer, |
|
decode_kwargs=dict( |
|
skip_special_tokens=True |
|
), |
|
skip_prompt=True, |
|
) |
|
generation_kwargs = dict( |
|
inputs, |
|
bad_words_ids=BAD_WORDS_IDS, |
|
max_length=4096, |
|
streamer=streamer, |
|
) |
|
thread = Thread( |
|
target=MODEL.generate, |
|
kwargs=generation_kwargs, |
|
) |
|
thread.start() |
|
generated_text = "" |
|
for new_text in streamer: |
|
generated_text += new_text |
|
print("before yield") |
|
|
|
print("after yield") |
|
|
|
rendered_page = render_webpage(generated_text) |
|
return generated_text, rendered_page |
|
|
|
generated_html = gr.Code( |
|
label="Extracted HTML", |
|
elem_id="generated_html", |
|
) |
|
rendered_html = gr.Image( |
|
label="Rendered HTML", |
|
show_download_button=False, |
|
show_share_button=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
css = """ |
|
.gradio-container{max-width: 1000px!important} |
|
h1{display: flex;align-items: center;justify-content: center;gap: .25em} |
|
*{transition: width 0.5s ease, flex-grow 0.5s ease} |
|
""" |
|
|
|
|
|
with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo: |
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=4, min_width=250) as upload_area: |
|
imagebox = gr.Image( |
|
type="pil", |
|
label="Screenshot to extract", |
|
visible=True, |
|
sources=["upload", "clipboard"], |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
submit_btn = gr.Button( |
|
value="▶️ Submit", visible=True, min_width=120 |
|
) |
|
clear_btn = gr.ClearButton( |
|
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120 |
|
) |
|
regenerate_btn = gr.Button( |
|
value="🔄 Regenerate", visible=True, min_width=120 |
|
) |
|
with gr.Column(scale=4): |
|
rendered_html.render() |
|
|
|
with gr.Row(): |
|
generated_html.render() |
|
|
|
with gr.Row(): |
|
template_gallery = gr.Gallery( |
|
value=IMAGE_GALLERY_PATHS, |
|
label="Templates Gallery", |
|
allow_preview=False, |
|
columns=5, |
|
elem_id="gallery", |
|
show_share_button=False, |
|
height=400, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
imagebox.upload, |
|
submit_btn.click, |
|
regenerate_btn.click, |
|
], |
|
fn=model_inference, |
|
inputs=[imagebox], |
|
outputs=[generated_html, rendered_html], |
|
queue=False, |
|
) |
|
regenerate_btn.click( |
|
fn=model_inference, |
|
inputs=[imagebox], |
|
outputs=[generated_html, rendered_html], |
|
queue=False, |
|
) |
|
template_gallery.select( |
|
fn=add_file_gallery, |
|
inputs=[template_gallery], |
|
outputs=[imagebox], |
|
queue=False, |
|
).success( |
|
fn=model_inference, |
|
inputs=[imagebox], |
|
outputs=[generated_html, rendered_html], |
|
queue=False, |
|
) |
|
demo.load(queue=False) |
|
|
|
demo.queue(max_size=40, api_open=False) |
|
demo.launch(max_threads=400) |
|
|