File size: 12,236 Bytes
f4e6998
 
 
 
 
 
 
 
 
 
 
bce2a0f
f4e6998
 
026cf13
f4e6998
 
 
 
bce2a0f
 
 
 
 
f4e6998
bce2a0f
 
f4e6998
bce2a0f
f4e6998
670a6e9
bce2a0f
 
670a6e9
bce2a0f
 
 
 
 
 
 
670a6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e6998
67ae2ac
bce2a0f
670a6e9
bce2a0f
670a6e9
bce2a0f
 
67ae2ac
 
bce2a0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670a6e9
f4e6998
026cf13
 
 
f4e6998
 
bce2a0f
 
 
 
f4e6998
026cf13
 
f4e6998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5827f97
f4e6998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67ae2ac
 
 
f4e6998
 
 
 
 
 
 
 
 
 
 
bce2a0f
f4e6998
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from typing import Optional, Sequence, Generator

from llama_cpp import Llama, LogitsProcessorList, LlamaGrammar, llama_cpp, npt, np, StoppingCriteriaList
from ctypes import POINTER

from KMP_list import kmp_search, compute_lps_array


class StreamingLLM(Llama):
    def __init__(self, model_path: str, **kwargs):
        super().__init__(model_path, **kwargs)
        self._venv_init()

    def str_detokenize(self, tokens) -> str:
        return self.detokenize(tokens).decode('utf-8', errors='ignore')

    def kv_cache_seq_trim(self):
        self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)

    def _venv_init(self):
        self.venv = [0]
        self.venv_idx_map = []

    def venv_create(self, name: str):
        self.venv.append(0)
        self.venv_idx_map.append(name)
        return name

    def venv_disband(self, name_set):
        if len(self.venv) <= 1:
            return False
        name_set = {x for x in name_set if x in self.venv_idx_map}
        if not name_set:
            return False
        while self.venv_idx_map:
            if self.venv_idx_map[0] in name_set:
                self.venv_idx_map.pop(0)  # 删除
                tmp = self.venv.pop(1)  # 对应的 venv 移入上一层
                self.venv[0] += tmp
            else:
                break
        return True

    def venv_revision(self, name: str):
        if len(self.venv) <= 1:
            return False
        if name not in self.venv_idx_map:
            return False
        _s = 0
        while self.venv_idx_map:
            if self.venv_idx_map[-1] == name:
                break
            self.venv_idx_map.pop()  # 删除
            _s += self.venv.pop()
        if _s:
            self.n_tokens -= min(_s, self.n_tokens)
            self.kv_cache_seq_trim()
        return True

    def venv_remove(self, name: str, keep_last=0):
        if len(self.venv) <= 1:
            return False
        if name not in self.venv_idx_map:
            return False
        venv_idx = self.venv_idx_map.index(name) + 1
        while self.venv_idx_map:
            if keep_last and self.venv_idx_map.count(name) <= keep_last:
                break  # 保留最后n个
            self.venv_idx_map.pop(venv_idx - 1)  # 删除
            if venv_idx == len(self.venv) - 1:
                # 最后一层
                self.n_tokens -= min(self.venv.pop(), self.n_tokens)
                self.kv_cache_seq_trim()
                break
            else:
                # 非最后一层
                n_keep = self.n_tokens - sum(self.venv[i] for i in range(venv_idx, len(self.venv)))
                n_discard = self.venv.pop(venv_idx)
                self.kv_cache_seq_ltrim(n_keep, n_discard)
                try:
                    venv_idx = self.venv_idx_map.index(name, venv_idx - 1) + 1
                except ValueError:  # 没有了
                    break
        return True

    def venv_pop_token(self, n=1):
        self.n_tokens -= n
        self.venv[-1] -= n
        self.kv_cache_seq_trim()

    @property
    def venv_info(self):
        return str((self.n_tokens, self.venv, self.venv_idx_map))

    def kv_cache_seq_ltrim(self, n_keep, n_discard=256, n_past=-1, im_start=None):
        if n_keep < 0:
            return
        if n_past < 0:
            n_past = self.n_tokens
        if im_start is not None:  # [<|im_start|>, name, nl]
            lps = compute_lps_array(im_start)
            _idx = kmp_search(self.input_ids, im_start, n_keep + n_discard, n_past, lps)
            if _idx >= n_keep:  # 其实是大于等于 n_keep + n_discard
                n_discard = _idx - n_keep  # 截断到最近的 im_start 序列结构
            else:
                _idx = kmp_search(self.input_ids, im_start, n_keep, n_past, lps)
                if _idx >= n_keep:
                    n_keep = _idx + len(im_start)  # 至少保留一个 im_start 序列结构
        self._ctx.kv_cache_seq_rm(-1, n_keep, n_keep + n_discard)
        self._ctx.kv_cache_seq_shift(0, n_keep + n_discard, n_past, -n_discard)
        self.input_ids[n_keep:n_past - n_discard] = self.input_ids[n_keep + n_discard:n_past]
        self.n_tokens = n_past - n_discard

    def eval_t(self, tokens, n_keep=4, n_discard=256, im_start=None):
        if self._n_ctx < self.n_tokens + len(tokens):
            tmp_n_discard = max(n_discard, self.n_tokens + len(tokens) - self._n_ctx)
            self.kv_cache_seq_ltrim(n_keep, tmp_n_discard, im_start=im_start)
        for i in range(0, len(tokens), self.n_batch):
            batch = tokens[i: i + self.n_batch]
            n_past = self.n_tokens
            n_tokens = len(batch)
            self._batch.set_batch(
                batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
            )
            self._ctx.decode(self._batch)
            # Save tokens
            self.input_ids[n_past: n_past + n_tokens] = batch
            # Save logits
            rows = n_tokens
            cols = self._n_vocab
            offset = (
                0 if self.context_params.logits_all else n_tokens - 1
            )  # NOTE: Only save the last token logits if logits_all is False
            self.scores[n_past + offset: n_past + n_tokens, :].reshape(-1)[
            :
            ] = self._ctx.get_logits()[offset * cols: rows * cols]
            # Update n_tokens
            self.n_tokens += n_tokens
            self.venv[-1] += n_tokens
        return self.n_tokens

    def sample_t(
            self,
            top_k: int = 40,
            top_p: float = 0.95,
            min_p: float = 0.05,
            typical_p: float = 1.0,
            temp: float = 0.80,
            repeat_penalty: float = 1.1,
            repeat_last_n: int = 64,
            frequency_penalty: float = 0.0,
            presence_penalty: float = 0.0,
            tfs_z: float = 1.0,
            mirostat_mode: int = 0,
            mirostat_eta: float = 0.1,
            mirostat_tau: float = 5.0,
            penalize_nl: bool = True,
            logits_processor=None,
            grammar: Optional[LlamaGrammar] = None,
    ):
        last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
            0, repeat_last_n - self.n_tokens
        ) + self._input_ids[-repeat_last_n:].tolist()
        last_n_tokens_size = len(last_n_tokens_data)
        n_vocab = self._n_vocab
        n_ctx = self._n_ctx
        top_k = n_vocab if top_k <= 0 else top_k
        last_n_tokens_size = n_ctx if last_n_tokens_size < 0 else last_n_tokens_size
        last_n_tokens_data_c = (llama_cpp.llama_token * last_n_tokens_size)(
            *last_n_tokens_data
        )
        logits: npt.NDArray[np.single] = self.scores[self.n_tokens - 1: self.n_tokens, :].ravel()

        if logits_processor is not None:
            logits[:] = logits_processor(self._input_ids, logits)

        self._candidates.copy_logits(logits)
        self._ctx.sample_repetition_penalties(
            candidates=self._candidates,
            last_tokens_data=last_n_tokens_data_c,
            penalty_last_n=last_n_tokens_size,
            penalty_repeat=repeat_penalty,
            penalty_freq=frequency_penalty,
            penalty_present=presence_penalty,
        )
        if not penalize_nl:
            nl_logit = logits[self._token_nl]
            self._candidates.candidates.data[self._token_nl].logit = llama_cpp.c_float(
                nl_logit
            )

        if grammar is not None:
            self._ctx.sample_grammar(
                candidates=self._candidates,
                grammar=grammar,
            )

        if temp < 0.0:
            self._ctx.sample_softmax(candidates=self._candidates)
            id_ = self._candidates.candidates.data[0].id
        elif temp == 0.0:
            id_ = self._ctx.sample_token_greedy(candidates=self._candidates)
        elif mirostat_mode == 1:
            self._ctx.sample_temp(candidates=self._candidates, temp=temp)
            id_ = self._ctx.sample_token_mirostat(
                candidates=self._candidates,
                tau=mirostat_tau,
                eta=mirostat_eta,
                mu=2.0 * mirostat_tau,
                m=100,
            )
        elif mirostat_mode == 2:
            self._ctx.sample_temp(candidates=self._candidates, temp=temp)
            id_ = self._ctx.sample_token_mirostat_v2(
                candidates=self._candidates,
                tau=mirostat_tau,
                eta=mirostat_eta,
                mu=2.0 * mirostat_tau,
            )
        else:
            self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1)
            self._ctx.sample_tail_free(candidates=self._candidates, z=tfs_z, min_keep=1)
            self._ctx.sample_typical(
                candidates=self._candidates, p=typical_p, min_keep=1
            )
            self._ctx.sample_top_p(candidates=self._candidates, p=top_p, min_keep=1)
            self._ctx.sample_min_p(candidates=self._candidates, p=min_p, min_keep=1)
            self._ctx.sample_temp(candidates=self._candidates, temp=temp)
            id_ = self._ctx.sample_token(candidates=self._candidates)
        if grammar is not None:
            self._ctx.grammar_accept_token(grammar=grammar, token=id_)
        return id_

    def generate_t(
            self,
            tokens: Sequence[int],
            n_keep,
            n_discard: int = 256,
            im_start=None,
            top_k: int = 40,
            top_p: float = 0.95,
            min_p: float = 0.05,
            typical_p: float = 1.0,
            temp: float = 0.80,
            repeat_penalty: float = 1.1,
            repeat_last_n: int = 64,
            frequency_penalty: float = 0.0,
            presence_penalty: float = 0.0,
            tfs_z: float = 1.0,
            mirostat_mode: int = 0,
            mirostat_tau: float = 5.0,
            mirostat_eta: float = 0.1,
            logits_processor: Optional[LogitsProcessorList] = None,
            stopping_criteria: Optional[StoppingCriteriaList] = None,
            grammar: Optional[LlamaGrammar] = None,
    ) -> Generator[int, Optional[Sequence[int]], None]:
        typical_p = float(typical_p)
        frequency_penalty = float(frequency_penalty)
        presence_penalty = float(presence_penalty)
        tfs_z = float(tfs_z)
        mirostat_tau = float(mirostat_tau)
        while True:
            self.eval_t(tokens, n_keep, n_discard, im_start=im_start)
            token = self.sample_t(
                top_k=top_k,
                top_p=top_p,
                min_p=min_p,
                typical_p=typical_p,
                temp=temp,
                repeat_penalty=repeat_penalty,
                repeat_last_n=repeat_last_n,
                frequency_penalty=frequency_penalty,
                presence_penalty=presence_penalty,
                tfs_z=tfs_z,
                mirostat_mode=mirostat_mode,
                mirostat_tau=mirostat_tau,
                mirostat_eta=mirostat_eta,
                logits_processor=logits_processor,
                grammar=grammar,
            )
            if stopping_criteria is not None and stopping_criteria(
                    self._input_ids, self._scores[-1, :]
            ):
                return
            tokens = yield token
            if tokens is None:
                tokens = [token]

    def load_session(self, filepath: str):
        n_tokens = POINTER(llama_cpp.c_size_t)(llama_cpp.c_size_t(0))
        tokens = (llama_cpp.llama_token * self.n_ctx())()
        retn = llama_cpp.llama_load_session_file(self._ctx.ctx,
                                                 filepath.encode('utf-8'),
                                                 tokens,
                                                 self.n_ctx(),
                                                 n_tokens)
        self.n_tokens = n_tokens.contents.value
        self.input_ids[:self.n_tokens] = tokens[:self.n_tokens]
        self._venv_init()
        return retn

    def save_session(self, filepath: str):
        tokens = self._input_ids.tolist()
        tokens = (llama_cpp.llama_token * len(tokens))(*tokens)
        return llama_cpp.llama_save_session_file(self._ctx.ctx, filepath.encode('utf-8'), tokens, self.n_tokens)