File size: 3,043 Bytes
184fd64 99cb033 184fd64 afc99d3 184fd64 b8bd0d3 184fd64 84fc022 184fd64 e3d0d39 0c5615e e3d0d39 9108bc3 e3d0d39 9108bc3 e3d0d39 9108bc3 a302767 9108bc3 c16cc6a b328b11 61e5078 c16cc6a 9108bc3 e3d0d39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import torch
import cv2
import gradio as gr
import numpy as np
import requests
from PIL import Image
from io import BytesIO
from transformers import OwlViTProcessor, OwlViTForObjectDetection
import os
# Use GPU if available
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-large-patch14").to(device)
model.eval()
processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")
def query_image(img, text_queries, score_threshold):
text_queries = text_queries.split(",")
img = np.array(img)
target_sizes = torch.Tensor([img.shape[:2]])
inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.cpu()
outputs.pred_boxes = outputs.pred_boxes.cpu()
results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
font = cv2.FONT_HERSHEY_SIMPLEX
for box, score, label in zip(boxes, scores, labels):
box = [int(i) for i in box.tolist()]
if score >= score_threshold:
img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5)
if box[3] + 25 > 768:
y = box[3] - 10
else:
y = box[3] + 25
img = cv2.putText(
img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
)
return img
description = """
\n\nYou can use OWL-ViT to query images with text descriptions of any object.
To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You
can also use the score threshold slider to set a threshold to filter out low probability predictions.
"""
with gr.Blocks() as demo:
with gr.Column():
with gr.Tab("Upload image"):
with gr.Row():
with gr.Column():
inputs_file=[gr.Image(source="upload"), gr.Textbox(), gr.Slider(0, 1, value=0.1)]
submit_btn = gr.Button("Submit")
im_output = gr.Image()
with gr.Tab("Capture image with webcam"):
with gr.Row():
with gr.Column():
inputs_web=[gr.Image(source="webcam"), gr.Textbox(), gr.Slider(0, 1, value=0.1)]
submit_btn_web = gr.Button("Submit")
web_output = gr.Image()
submit_btn.click(fn=query_image, inputs= inputs_file, outputs = im_output)
submit_btn_web.click(fn=query_image, inputs= inputs_web, outputs = web_output)
gr.Markdown("## Image Examples")
gr.Examples(
examples=os.path.join(os.path.dirname(__file__), "examples", "IMGP0178.jpg"),
inputs=inputs_file,
outputs=im_output,
fn=query_image,
cache_examples=True,
)
demo.launch()
|