NOABOL35631y commited on
Commit
309bbd2
·
1 Parent(s): ed358b1
Files changed (1) hide show
  1. Y +29 -0
Y ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import tensorflow as tf
3
+ from PIL import Image
4
+
5
+
6
+ def convert_to_tf_tensor(image: Image):
7
+ np_image = np.array(image)
8
+ tf_image = tf.convert_to_tensor(np_image)
9
+ # `expand_dims()` is used to add a batch dimension since
10
+ # the TF augmentation layers operates on batched inputs.
11
+ return tf.expand_dims(tf_image, 0)
12
+
13
+
14
+ def preprocess_train(example_batch):
15
+ """Apply train_transforms across a batch."""
16
+ images = [
17
+ train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"]
18
+ ]
19
+ example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images]
20
+ return example_batch
21
+
22
+
23
+ def preprocess_val(example_batch):
24
+ """Apply val_transforms across a batch."""
25
+ images = [
26
+ val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"]
27
+ ]
28
+ example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images]
29
+ return example_batch