Spaces:
Sleeping
Sleeping
File size: 14,263 Bytes
b6c4754 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import os
import sys
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
# os.chdir("../")
import cv2
import gradio as gr
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
import torch
import tempfile
from stable_diffusion_inpaint import fill_img_with_sd, replace_img_with_sd
from lama_inpaint import (
inpaint_img_with_lama,
build_lama_model,
inpaint_img_with_builded_lama,
)
from utils import (
load_img_to_array,
save_array_to_img,
dilate_mask,
show_mask,
show_points,
)
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry
import argparse
def setup_args(parser):
parser.add_argument(
"--lama_config",
type=str,
default="./lama/configs/prediction/default.yaml",
help="The path to the config file of lama model. "
"Default: the config of big-lama",
)
parser.add_argument(
"--lama_ckpt",
type=str,
default="./pretrained_models/big-lama",
help="The path to the lama checkpoint.",
)
parser.add_argument(
"--sam_ckpt",
type=str,
default="./pretrained_models/sam_vit_h_4b8939.pth",
help="The path to the SAM checkpoint to use for mask generation.",
)
def mkstemp(suffix, dir=None):
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
os.close(fd)
return Path(path)
def get_sam_feat(img):
model["sam"].set_image(img)
features = model["sam"].features
orig_h = model["sam"].orig_h
orig_w = model["sam"].orig_w
input_h = model["sam"].input_h
input_w = model["sam"].input_w
model["sam"].reset_image()
return features, orig_h, orig_w, input_h, input_w
def get_fill_img_with_sd(image, mask, image_resolution, text_prompt):
device = "cuda" if torch.cuda.is_available() else "cpu"
if len(mask.shape) == 3:
mask = mask[:, :, 0]
np_image = np.array(image, dtype=np.uint8)
H, W, C = np_image.shape
np_image = HWC3(np_image)
np_image = resize_image(np_image, image_resolution)
mask = cv2.resize(
mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST
)
img_fill = fill_img_with_sd(np_image, mask, text_prompt, device=device)
img_fill = img_fill.astype(np.uint8)
return img_fill
def get_replace_img_with_sd(image, mask, image_resolution, text_prompt):
device = "cuda" if torch.cuda.is_available() else "cpu"
if len(mask.shape) == 3:
mask = mask[:, :, 0]
np_image = np.array(image, dtype=np.uint8)
H, W, C = np_image.shape
np_image = HWC3(np_image)
np_image = resize_image(np_image, image_resolution)
mask = cv2.resize(
mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST
)
img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device)
img_replaced = img_replaced.astype(np.uint8)
return img_replaced
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution):
H, W, C = input_image.shape
k = float(resolution) / min(H, W)
H = int(np.round(H * k / 64.0)) * 64
W = int(np.round(W * k / 64.0)) * 64
img = cv2.resize(
input_image,
(W, H),
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA,
)
return img
def resize_points(clicked_points, original_shape, resolution):
original_height, original_width, _ = original_shape
original_height = float(original_height)
original_width = float(original_width)
scale_factor = float(resolution) / min(original_height, original_width)
resized_points = []
for point in clicked_points:
x, y, lab = point
resized_x = int(round(x * scale_factor))
resized_y = int(round(y * scale_factor))
resized_point = (resized_x, resized_y, lab)
resized_points.append(resized_point)
return resized_points
def get_click_mask(
clicked_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size
):
# model['sam'].set_image(image)
model["sam"].is_image_set = True
model["sam"].features = features
model["sam"].orig_h = orig_h
model["sam"].orig_w = orig_w
model["sam"].input_h = input_h
model["sam"].input_w = input_w
# Separate the points and labels
points, labels = zip(*[(point[:2], point[2]) for point in clicked_points])
# Convert the points and labels to numpy arrays
input_point = np.array(points)
input_label = np.array(labels)
masks, _, _ = model["sam"].predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
if dilate_kernel_size is not None:
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks]
else:
masks = [mask for mask in masks]
return masks
def process_image_click(
original_image,
point_prompt,
clicked_points,
image_resolution,
features,
orig_h,
orig_w,
input_h,
input_w,
dilate_kernel_size,
evt: gr.SelectData,
):
if clicked_points is None:
clicked_points = []
# print("Received click event:", evt)
if original_image is None:
# print("No image loaded.")
return None, clicked_points, None
clicked_coords = evt.index
if clicked_coords is None:
# print("No valid coordinates received.")
return None, clicked_points, None
x, y = clicked_coords
label = point_prompt
lab = 1 if label == "Foreground Point" else 0
clicked_points.append((x, y, lab))
# print("Updated points list:", clicked_points)
input_image = np.array(original_image, dtype=np.uint8)
H, W, C = input_image.shape
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
# print("Processed image size:", img.shape)
resized_points = resize_points(clicked_points, input_image.shape, image_resolution)
mask_click_np = get_click_mask(
resized_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size
)
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0
mask_image = HWC3(mask_click_np.astype(np.uint8))
mask_image = cv2.resize(mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
# print("Mask image prepared.")
edited_image = input_image
for x, y, lab in clicked_points:
color = (255, 0, 0) if lab == 1 else (0, 0, 255)
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)
opacity_mask = 0.75
opacity_edited = 1.0
overlay_image = cv2.addWeighted(
edited_image,
opacity_edited,
(mask_image * np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8),
opacity_mask,
0,
)
no_mask_overlay = edited_image.copy()
return no_mask_overlay, overlay_image, clicked_points, mask_image
def image_upload(image, image_resolution):
if image is None:
return None, None, None, None, None, None
else:
np_image = np.array(image, dtype=np.uint8)
H, W, C = np_image.shape
np_image = HWC3(np_image)
np_image = resize_image(np_image, image_resolution)
features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image)
return image, features, orig_h, orig_w, input_h, input_w
def get_inpainted_img(image, mask, image_resolution):
lama_config = args.lama_config
device = "cuda" if torch.cuda.is_available() else "cpu"
if len(mask.shape) == 3:
mask = mask[:, :, 0]
img_inpainted = inpaint_img_with_builded_lama(
model["lama"], image, mask, lama_config, device=device
)
return img_inpainted
# get args
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
# build models
model = {}
# build the sam model
model_type = "vit_h"
ckpt_p = args.sam_ckpt
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_sam.to(device=device)
model["sam"] = SamPredictor(model_sam)
# build the lama model
lama_config = args.lama_config
lama_ckpt = args.lama_ckpt
device = "cuda" if torch.cuda.is_available() else "cpu"
model["lama"] = build_lama_model(lama_config, lama_ckpt, device=device)
button_size = (100, 50)
with gr.Blocks() as demo:
clicked_points = gr.State([])
# origin_image = gr.State(None)
click_mask = gr.State(None)
features = gr.State(None)
orig_h = gr.State(None)
orig_w = gr.State(None)
input_h = gr.State(None)
input_w = gr.State(None)
with gr.Row():
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Upload an image and click the region you want to edit.")
with gr.Row():
source_image_click = gr.Image(
type="numpy",
interactive=True,
label="Upload and Edit Image",
)
image_edit_complete = gr.Image(
type="numpy",
interactive=False,
label="Editing Complete",
)
with gr.Row():
point_prompt = gr.Radio(
choices=["Foreground Point", "Background Point"],
value="Foreground Point",
label="Point Label",
interactive=True,
show_label=False,
)
image_resolution = gr.Slider(
label="Image Resolution",
minimum=256,
maximum=768,
value=512,
step=64,
)
dilate_kernel_size = gr.Slider(
label="Dilate Kernel Size", minimum=0, maximum=30, value=15, step=1
)
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Control Panel")
text_prompt = gr.Textbox(label="Text Prompt")
lama = gr.Button("Inpaint Image", variant="primary")
fill_sd = gr.Button("Fill Anything with SD", variant="primary")
replace_sd = gr.Button("Replace Anything with SD", variant="primary")
clear_button_image = gr.Button(value="Reset", variant="secondary")
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
gr.Markdown("## Mask")
with gr.Row():
click_mask = gr.Image(
type="numpy",
label="Click Mask",
interactive=False,
)
with gr.Column():
with gr.Row():
gr.Markdown("## Image Removed with Mask")
with gr.Row():
img_rm_with_mask = gr.Image(
type="numpy",
label="Image Removed with Mask",
interactive=False,
)
with gr.Column():
with gr.Row():
gr.Markdown("## Fill Anything with Mask")
with gr.Row():
img_fill_with_mask = gr.Image(
type="numpy",
label="Image Fill Anything with Mask",
interactive=False,
)
with gr.Column():
with gr.Row():
gr.Markdown("## Replace Anything with Mask")
with gr.Row():
img_replace_with_mask = gr.Image(
type="numpy",
label="Image Replace Anything with Mask",
interactive=False,
)
gr.Markdown(
"Github Source Code: [Link](https://github.com/pg56714/Inpaint-Anything-Gradio)"
)
source_image_click.upload(
image_upload,
inputs=[source_image_click, image_resolution],
outputs=[source_image_click, features, orig_h, orig_w, input_h, input_w],
)
source_image_click.select(
process_image_click,
inputs=[
source_image_click,
point_prompt,
clicked_points,
image_resolution,
features,
orig_h,
orig_w,
input_h,
input_w,
dilate_kernel_size,
],
outputs=[source_image_click, image_edit_complete, clicked_points, click_mask],
show_progress=True,
queue=True,
)
lama.click(
get_inpainted_img,
inputs=[source_image_click, click_mask, image_resolution],
outputs=[img_rm_with_mask],
)
fill_sd.click(
get_fill_img_with_sd,
inputs=[source_image_click, click_mask, image_resolution, text_prompt],
outputs=[img_fill_with_mask],
)
replace_sd.click(
get_replace_img_with_sd,
inputs=[source_image_click, click_mask, image_resolution, text_prompt],
outputs=[img_replace_with_mask],
)
def reset(*args):
return [None for _ in args]
clear_button_image.click(
reset,
inputs=[
source_image_click,
image_edit_complete,
clicked_points,
click_mask,
features,
img_rm_with_mask,
img_fill_with_mask,
img_replace_with_mask,
],
outputs=[
source_image_click,
image_edit_complete,
clicked_points,
click_mask,
features,
img_rm_with_mask,
img_fill_with_mask,
img_replace_with_mask,
],
)
if __name__ == "__main__":
demo.launch(debug=False, show_error=True)
|