Spaces:
Sleeping
Sleeping
File size: 6,562 Bytes
7e0cd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import cv2
from matplotlib import pyplot as plt
import PIL.Image as Image
import numpy as np
def crop_for_filling_pre(image: np.array, mask: np.array, crop_size: int = 512):
# Calculate the aspect ratio of the image
height, width = image.shape[:2]
aspect_ratio = float(width) / float(height)
# If the shorter side is less than 512, resize the image proportionally
if min(height, width) < crop_size:
if height < width:
new_height = crop_size
new_width = int(new_height * aspect_ratio)
else:
new_width = crop_size
new_height = int(new_width / aspect_ratio)
image = cv2.resize(image, (new_width, new_height))
mask = cv2.resize(mask, (new_width, new_height))
# Find the bounding box of the mask
x, y, w, h = cv2.boundingRect(mask)
# Update the height and width of the resized image
height, width = image.shape[:2]
# # If the 512x512 square cannot cover the entire mask, resize the image accordingly
if w > crop_size or h > crop_size:
# padding to square at first
if height < width:
padding = width - height
image = np.pad(image, ((padding // 2, padding - padding // 2), (0, 0), (0, 0)), 'constant')
mask = np.pad(mask, ((padding // 2, padding - padding // 2), (0, 0)), 'constant')
else:
padding = height - width
image = np.pad(image, ((0, 0), (padding // 2, padding - padding // 2), (0, 0)), 'constant')
mask = np.pad(mask, ((0, 0), (padding // 2, padding - padding // 2)), 'constant')
resize_factor = crop_size / max(w, h)
image = cv2.resize(image, (0, 0), fx=resize_factor, fy=resize_factor)
mask = cv2.resize(mask, (0, 0), fx=resize_factor, fy=resize_factor)
x, y, w, h = cv2.boundingRect(mask)
# Calculate the crop coordinates
crop_x = min(max(x + w // 2 - crop_size // 2, 0), width - crop_size)
crop_y = min(max(y + h // 2 - crop_size // 2, 0), height - crop_size)
# Crop the image
cropped_image = image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size]
cropped_mask = mask[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size]
return cropped_image, cropped_mask
def crop_for_filling_post(
image: np.array,
mask: np.array,
filled_image: np.array,
crop_size: int = 512,
):
image_copy = image.copy()
mask_copy = mask.copy()
# Calculate the aspect ratio of the image
height, width = image.shape[:2]
height_ori, width_ori = height, width
aspect_ratio = float(width) / float(height)
# If the shorter side is less than 512, resize the image proportionally
if min(height, width) < crop_size:
if height < width:
new_height = crop_size
new_width = int(new_height * aspect_ratio)
else:
new_width = crop_size
new_height = int(new_width / aspect_ratio)
image = cv2.resize(image, (new_width, new_height))
mask = cv2.resize(mask, (new_width, new_height))
# Find the bounding box of the mask
x, y, w, h = cv2.boundingRect(mask)
# Update the height and width of the resized image
height, width = image.shape[:2]
# # If the 512x512 square cannot cover the entire mask, resize the image accordingly
if w > crop_size or h > crop_size:
flag_padding = True
# padding to square at first
if height < width:
padding = width - height
image = np.pad(image, ((padding // 2, padding - padding // 2), (0, 0), (0, 0)), 'constant')
mask = np.pad(mask, ((padding // 2, padding - padding // 2), (0, 0)), 'constant')
padding_side = 'h'
else:
padding = height - width
image = np.pad(image, ((0, 0), (padding // 2, padding - padding // 2), (0, 0)), 'constant')
mask = np.pad(mask, ((0, 0), (padding // 2, padding - padding // 2)), 'constant')
padding_side = 'w'
resize_factor = crop_size / max(w, h)
image = cv2.resize(image, (0, 0), fx=resize_factor, fy=resize_factor)
mask = cv2.resize(mask, (0, 0), fx=resize_factor, fy=resize_factor)
x, y, w, h = cv2.boundingRect(mask)
else:
flag_padding = False
# Calculate the crop coordinates
crop_x = min(max(x + w // 2 - crop_size // 2, 0), width - crop_size)
crop_y = min(max(y + h // 2 - crop_size // 2, 0), height - crop_size)
# Fill the image
image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] = filled_image
if flag_padding:
image = cv2.resize(image, (0, 0), fx=1/resize_factor, fy=1/resize_factor)
if padding_side == 'h':
image = image[padding // 2:padding // 2 + height_ori, :]
else:
image = image[:, padding // 2:padding // 2 + width_ori]
image = cv2.resize(image, (width_ori, height_ori))
image_copy[mask_copy==255] = image[mask_copy==255]
return image_copy
if __name__ == '__main__':
# image = cv2.imread('example/boat.jpg')
# mask = cv2.imread('example/boat_mask_2.png', cv2.IMREAD_GRAYSCALE)
image = cv2.imread('./example/groceries.jpg')
mask = cv2.imread('example/groceries_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/bridge.jpg')
# mask = cv2.imread('example/bridge_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/person_umbrella.jpg')
# mask = cv2.imread('example/person_umbrella_mask_2.png', cv2.IMREAD_GRAYSCALE)
# image = cv2.imread('example/hippopotamus.jpg')
# mask = cv2.imread('example/hippopotamus_mask_1.png', cv2.IMREAD_GRAYSCALE)
cropped_image, cropped_mask = crop_for_filling_pre(image, mask)
# ^ ------------------------------------------------------------------------------------
# ^ Please conduct inpainting or filling here on the cropped image with the cropped mask
# ^ ------------------------------------------------------------------------------------
# e.g.
# cropped_image[cropped_mask==255] = 0
cv2.imwrite('cropped_image.jpg', cropped_image)
cv2.imwrite('cropped_mask.jpg', cropped_mask)
print(cropped_image.shape)
print(cropped_mask.shape)
image = crop_for_filling_post(image, mask, cropped_image)
cv2.imwrite('filled_image.jpg', image)
print(image.shape)
|