Spaces:
Running
Running
File size: 3,609 Bytes
564565f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
#!/usr/bin/env python3
import os
import pandas as pd
from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset
from saicinpainting.evaluation.evaluator import InpaintingEvaluator, lpips_fid100_f1
from saicinpainting.evaluation.losses.base_loss import SegmentationAwareSSIM, \
SegmentationClassStats, SSIMScore, LPIPSScore, FIDScore, SegmentationAwareLPIPS, SegmentationAwareFID
from saicinpainting.evaluation.utils import load_yaml
def main(args):
config = load_yaml(args.config)
dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs)
metrics = {
'ssim': SSIMScore(),
'lpips': LPIPSScore(),
'fid': FIDScore()
}
enable_segm = config.get('segmentation', dict(enable=False)).get('enable', False)
if enable_segm:
weights_path = os.path.expandvars(config.segmentation.weights_path)
metrics.update(dict(
segm_stats=SegmentationClassStats(weights_path=weights_path),
segm_ssim=SegmentationAwareSSIM(weights_path=weights_path),
segm_lpips=SegmentationAwareLPIPS(weights_path=weights_path),
segm_fid=SegmentationAwareFID(weights_path=weights_path)
))
evaluator = InpaintingEvaluator(dataset, scores=metrics,
integral_title='lpips_fid100_f1', integral_func=lpips_fid100_f1,
**config.evaluator_kwargs)
os.makedirs(os.path.dirname(args.outpath), exist_ok=True)
results = evaluator.evaluate()
results = pd.DataFrame(results).stack(1).unstack(0)
results.dropna(axis=1, how='all', inplace=True)
results.to_csv(args.outpath, sep='\t', float_format='%.4f')
if enable_segm:
only_short_results = results[[c for c in results.columns if not c[0].startswith('segm_')]].dropna(axis=1, how='all')
only_short_results.to_csv(args.outpath + '_short', sep='\t', float_format='%.4f')
print(only_short_results)
segm_metrics_results = results[['segm_ssim', 'segm_lpips', 'segm_fid']].dropna(axis=1, how='all').transpose().unstack(0).reorder_levels([1, 0], axis=1)
segm_metrics_results.drop(['mean', 'std'], axis=0, inplace=True)
segm_stats_results = results['segm_stats'].dropna(axis=1, how='all').transpose()
segm_stats_results.index = pd.MultiIndex.from_tuples(n.split('/') for n in segm_stats_results.index)
segm_stats_results = segm_stats_results.unstack(0).reorder_levels([1, 0], axis=1)
segm_stats_results.sort_index(axis=1, inplace=True)
segm_stats_results.dropna(axis=0, how='all', inplace=True)
segm_results = pd.concat([segm_metrics_results, segm_stats_results], axis=1, sort=True)
segm_results.sort_values(('mask_freq', 'total'), ascending=False, inplace=True)
segm_results.to_csv(args.outpath + '_segm', sep='\t', float_format='%.4f')
else:
print(results)
if __name__ == '__main__':
import argparse
aparser = argparse.ArgumentParser()
aparser.add_argument('config', type=str, help='Path to evaluation config')
aparser.add_argument('datadir', type=str,
help='Path to folder with images and masks (output of gen_mask_dataset.py)')
aparser.add_argument('predictdir', type=str,
help='Path to folder with predicts (e.g. predict_hifill_baseline.py)')
aparser.add_argument('outpath', type=str, help='Where to put results')
main(aparser.parse_args())
|