File size: 5,577 Bytes
564565f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision

from saicinpainting.training.losses.perceptual import IMAGENET_STD, IMAGENET_MEAN


def dummy_distance_weighter(real_img, pred_img, mask):
    return mask


def get_gauss_kernel(kernel_size, width_factor=1):
    coords = torch.stack(torch.meshgrid(torch.arange(kernel_size),
                                        torch.arange(kernel_size)),
                         dim=0).float()
    diff = torch.exp(-((coords - kernel_size // 2) ** 2).sum(0) / kernel_size / width_factor)
    diff /= diff.sum()
    return diff


class BlurMask(nn.Module):
    def __init__(self, kernel_size=5, width_factor=1):
        super().__init__()
        self.filter = nn.Conv2d(1, 1, kernel_size, padding=kernel_size // 2, padding_mode='replicate', bias=False)
        self.filter.weight.data.copy_(get_gauss_kernel(kernel_size, width_factor=width_factor))

    def forward(self, real_img, pred_img, mask):
        with torch.no_grad():
            result = self.filter(mask) * mask
            return result


class EmulatedEDTMask(nn.Module):
    def __init__(self, dilate_kernel_size=5, blur_kernel_size=5, width_factor=1):
        super().__init__()
        self.dilate_filter = nn.Conv2d(1, 1, dilate_kernel_size, padding=dilate_kernel_size// 2, padding_mode='replicate',
                                       bias=False)
        self.dilate_filter.weight.data.copy_(torch.ones(1, 1, dilate_kernel_size, dilate_kernel_size, dtype=torch.float))
        self.blur_filter = nn.Conv2d(1, 1, blur_kernel_size, padding=blur_kernel_size // 2, padding_mode='replicate', bias=False)
        self.blur_filter.weight.data.copy_(get_gauss_kernel(blur_kernel_size, width_factor=width_factor))

    def forward(self, real_img, pred_img, mask):
        with torch.no_grad():
            known_mask = 1 - mask
            dilated_known_mask = (self.dilate_filter(known_mask) > 1).float()
            result = self.blur_filter(1 - dilated_known_mask) * mask
            return result


class PropagatePerceptualSim(nn.Module):
    def __init__(self, level=2, max_iters=10, temperature=500, erode_mask_size=3):
        super().__init__()
        vgg = torchvision.models.vgg19(pretrained=True).features
        vgg_avg_pooling = []

        for weights in vgg.parameters():
            weights.requires_grad = False

        cur_level_i = 0
        for module in vgg.modules():
            if module.__class__.__name__ == 'Sequential':
                continue
            elif module.__class__.__name__ == 'MaxPool2d':
                vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0))
            else:
                vgg_avg_pooling.append(module)
                if module.__class__.__name__ == 'ReLU':
                    cur_level_i += 1
                if cur_level_i == level:
                    break

        self.features = nn.Sequential(*vgg_avg_pooling)

        self.max_iters = max_iters
        self.temperature = temperature
        self.do_erode = erode_mask_size > 0
        if self.do_erode:
            self.erode_mask = nn.Conv2d(1, 1, erode_mask_size, padding=erode_mask_size // 2, bias=False)
            self.erode_mask.weight.data.fill_(1)

    def forward(self, real_img, pred_img, mask):
        with torch.no_grad():
            real_img = (real_img - IMAGENET_MEAN.to(real_img)) / IMAGENET_STD.to(real_img)
            real_feats = self.features(real_img)

            vertical_sim = torch.exp(-(real_feats[:, :, 1:] - real_feats[:, :, :-1]).pow(2).sum(1, keepdim=True)
                                     / self.temperature)
            horizontal_sim = torch.exp(-(real_feats[:, :, :, 1:] - real_feats[:, :, :, :-1]).pow(2).sum(1, keepdim=True)
                                       / self.temperature)

            mask_scaled = F.interpolate(mask, size=real_feats.shape[-2:], mode='bilinear', align_corners=False)
            if self.do_erode:
                mask_scaled = (self.erode_mask(mask_scaled) > 1).float()

            cur_knowness = 1 - mask_scaled

            for iter_i in range(self.max_iters):
                new_top_knowness = F.pad(cur_knowness[:, :, :-1] * vertical_sim, (0, 0, 1, 0), mode='replicate')
                new_bottom_knowness = F.pad(cur_knowness[:, :, 1:] * vertical_sim, (0, 0, 0, 1), mode='replicate')

                new_left_knowness = F.pad(cur_knowness[:, :, :, :-1] * horizontal_sim, (1, 0, 0, 0), mode='replicate')
                new_right_knowness = F.pad(cur_knowness[:, :, :, 1:] * horizontal_sim, (0, 1, 0, 0), mode='replicate')

                new_knowness = torch.stack([new_top_knowness, new_bottom_knowness,
                                            new_left_knowness, new_right_knowness],
                                           dim=0).max(0).values

                cur_knowness = torch.max(cur_knowness, new_knowness)

            cur_knowness = F.interpolate(cur_knowness, size=mask.shape[-2:], mode='bilinear')
            result = torch.min(mask, 1 - cur_knowness)

            return result


def make_mask_distance_weighter(kind='none', **kwargs):
    if kind == 'none':
        return dummy_distance_weighter
    if kind == 'blur':
        return BlurMask(**kwargs)
    if kind == 'edt':
        return EmulatedEDTMask(**kwargs)
    if kind == 'pps':
        return PropagatePerceptualSim(**kwargs)
    raise ValueError(f'Unknown mask distance weighter kind {kind}')