Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torch.optim import Adam, SGD | |
from kornia.filters import gaussian_blur2d | |
from kornia.geometry.transform import resize | |
from kornia.morphology import erosion | |
from torch.nn import functional as F | |
import numpy as np | |
import cv2 | |
from saicinpainting.evaluation.data import pad_tensor_to_modulo | |
from saicinpainting.evaluation.utils import move_to_device | |
from saicinpainting.training.modules.ffc import FFCResnetBlock | |
from saicinpainting.training.modules.pix2pixhd import ResnetBlock | |
from tqdm import tqdm | |
def _pyrdown(im : torch.Tensor, downsize : tuple=None): | |
"""downscale the image""" | |
if downsize is None: | |
downsize = (im.shape[2]//2, im.shape[3]//2) | |
assert im.shape[1] == 3, "Expected shape for the input to be (n,3,height,width)" | |
im = gaussian_blur2d(im, kernel_size=(5,5), sigma=(1.0,1.0)) | |
im = F.interpolate(im, size=downsize, mode='bilinear', align_corners=False) | |
return im | |
def _pyrdown_mask(mask : torch.Tensor, downsize : tuple=None, eps : float=1e-8, blur_mask : bool=True, round_up : bool=True): | |
"""downscale the mask tensor | |
Parameters | |
---------- | |
mask : torch.Tensor | |
mask of size (B, 1, H, W) | |
downsize : tuple, optional | |
size to downscale to. If None, image is downscaled to half, by default None | |
eps : float, optional | |
threshold value for binarizing the mask, by default 1e-8 | |
blur_mask : bool, optional | |
if True, apply gaussian filter before downscaling, by default True | |
round_up : bool, optional | |
if True, values above eps are marked 1, else, values below 1-eps are marked 0, by default True | |
Returns | |
------- | |
torch.Tensor | |
downscaled mask | |
""" | |
if downsize is None: | |
downsize = (mask.shape[2]//2, mask.shape[3]//2) | |
assert mask.shape[1] == 1, "Expected shape for the input to be (n,1,height,width)" | |
if blur_mask == True: | |
mask = gaussian_blur2d(mask, kernel_size=(5,5), sigma=(1.0,1.0)) | |
mask = F.interpolate(mask, size=downsize, mode='bilinear', align_corners=False) | |
else: | |
mask = F.interpolate(mask, size=downsize, mode='bilinear', align_corners=False) | |
if round_up: | |
mask[mask>=eps] = 1 | |
mask[mask<eps] = 0 | |
else: | |
mask[mask>=1.0-eps] = 1 | |
mask[mask<1.0-eps] = 0 | |
return mask | |
def _erode_mask(mask : torch.Tensor, ekernel : torch.Tensor=None, eps : float=1e-8): | |
"""erode the mask, and set gray pixels to 0""" | |
if ekernel is not None: | |
mask = erosion(mask, ekernel) | |
mask[mask>=1.0-eps] = 1 | |
mask[mask<1.0-eps] = 0 | |
return mask | |
def _l1_loss( | |
pred : torch.Tensor, pred_downscaled : torch.Tensor, ref : torch.Tensor, | |
mask : torch.Tensor, mask_downscaled : torch.Tensor, | |
image : torch.Tensor, on_pred : bool=True | |
): | |
"""l1 loss on src pixels, and downscaled predictions if on_pred=True""" | |
loss = torch.mean(torch.abs(pred[mask<1e-8] - image[mask<1e-8])) | |
if on_pred: | |
loss += torch.mean(torch.abs(pred_downscaled[mask_downscaled>=1e-8] - ref[mask_downscaled>=1e-8])) | |
return loss | |
def _infer( | |
image : torch.Tensor, mask : torch.Tensor, | |
forward_front : nn.Module, forward_rears : nn.Module, | |
ref_lower_res : torch.Tensor, orig_shape : tuple, devices : list, | |
scale_ind : int, n_iters : int=15, lr : float=0.002): | |
"""Performs inference with refinement at a given scale. | |
Parameters | |
---------- | |
image : torch.Tensor | |
input image to be inpainted, of size (1,3,H,W) | |
mask : torch.Tensor | |
input inpainting mask, of size (1,1,H,W) | |
forward_front : nn.Module | |
the front part of the inpainting network | |
forward_rears : nn.Module | |
the rear part of the inpainting network | |
ref_lower_res : torch.Tensor | |
the inpainting at previous scale, used as reference image | |
orig_shape : tuple | |
shape of the original input image before padding | |
devices : list | |
list of available devices | |
scale_ind : int | |
the scale index | |
n_iters : int, optional | |
number of iterations of refinement, by default 15 | |
lr : float, optional | |
learning rate, by default 0.002 | |
Returns | |
------- | |
torch.Tensor | |
inpainted image | |
""" | |
masked_image = image * (1 - mask) | |
masked_image = torch.cat([masked_image, mask], dim=1) | |
mask = mask.repeat(1,3,1,1) | |
if ref_lower_res is not None: | |
ref_lower_res = ref_lower_res.detach() | |
with torch.no_grad(): | |
z1,z2 = forward_front(masked_image) | |
# Inference | |
mask = mask.to(devices[-1]) | |
ekernel = torch.from_numpy(cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(15,15)).astype(bool)).float() | |
ekernel = ekernel.to(devices[-1]) | |
image = image.to(devices[-1]) | |
z1, z2 = z1.detach().to(devices[0]), z2.detach().to(devices[0]) | |
z1.requires_grad, z2.requires_grad = True, True | |
optimizer = Adam([z1,z2], lr=lr) | |
pbar = tqdm(range(n_iters), leave=False) | |
for idi in pbar: | |
optimizer.zero_grad() | |
input_feat = (z1,z2) | |
for idd, forward_rear in enumerate(forward_rears): | |
output_feat = forward_rear(input_feat) | |
if idd < len(devices) - 1: | |
midz1, midz2 = output_feat | |
midz1, midz2 = midz1.to(devices[idd+1]), midz2.to(devices[idd+1]) | |
input_feat = (midz1, midz2) | |
else: | |
pred = output_feat | |
if ref_lower_res is None: | |
break | |
losses = {} | |
######################### multi-scale ############################# | |
# scaled loss with downsampler | |
pred_downscaled = _pyrdown(pred[:,:,:orig_shape[0],:orig_shape[1]]) | |
mask_downscaled = _pyrdown_mask(mask[:,:1,:orig_shape[0],:orig_shape[1]], blur_mask=False, round_up=False) | |
mask_downscaled = _erode_mask(mask_downscaled, ekernel=ekernel) | |
mask_downscaled = mask_downscaled.repeat(1,3,1,1) | |
losses["ms_l1"] = _l1_loss(pred, pred_downscaled, ref_lower_res, mask, mask_downscaled, image, on_pred=True) | |
loss = sum(losses.values()) | |
pbar.set_description("Refining scale {} using scale {} ...current loss: {:.4f}".format(scale_ind+1, scale_ind, loss.item())) | |
if idi < n_iters - 1: | |
loss.backward() | |
optimizer.step() | |
del pred_downscaled | |
del loss | |
del pred | |
# "pred" is the prediction after Plug-n-Play module | |
inpainted = mask * pred + (1 - mask) * image | |
inpainted = inpainted.detach().cpu() | |
return inpainted | |
def _get_image_mask_pyramid(batch : dict, min_side : int, max_scales : int, px_budget : int): | |
"""Build the image mask pyramid | |
Parameters | |
---------- | |
batch : dict | |
batch containing image, mask, etc | |
min_side : int | |
minimum side length to limit the number of scales of the pyramid | |
max_scales : int | |
maximum number of scales allowed | |
px_budget : int | |
the product H*W cannot exceed this budget, because of resource constraints | |
Returns | |
------- | |
tuple | |
image-mask pyramid in the form of list of images and list of masks | |
""" | |
assert batch['image'].shape[0] == 1, "refiner works on only batches of size 1!" | |
h, w = batch['unpad_to_size'] | |
h, w = h[0].item(), w[0].item() | |
image = batch['image'][...,:h,:w] | |
mask = batch['mask'][...,:h,:w] | |
if h*w > px_budget: | |
#resize | |
ratio = np.sqrt(px_budget / float(h*w)) | |
h_orig, w_orig = h, w | |
h,w = int(h*ratio), int(w*ratio) | |
print(f"Original image too large for refinement! Resizing {(h_orig,w_orig)} to {(h,w)}...") | |
image = resize(image, (h,w),interpolation='bilinear', align_corners=False) | |
mask = resize(mask, (h,w),interpolation='bilinear', align_corners=False) | |
mask[mask>1e-8] = 1 | |
breadth = min(h,w) | |
n_scales = min(1 + int(round(max(0,np.log2(breadth / min_side)))), max_scales) | |
ls_images = [] | |
ls_masks = [] | |
ls_images.append(image) | |
ls_masks.append(mask) | |
for _ in range(n_scales - 1): | |
image_p = _pyrdown(ls_images[-1]) | |
mask_p = _pyrdown_mask(ls_masks[-1]) | |
ls_images.append(image_p) | |
ls_masks.append(mask_p) | |
# reverse the lists because we want the lowest resolution image as index 0 | |
return ls_images[::-1], ls_masks[::-1] | |
def refine_predict( | |
batch : dict, inpainter : nn.Module, gpu_ids : str, | |
modulo : int, n_iters : int, lr : float, min_side : int, | |
max_scales : int, px_budget : int | |
): | |
"""Refines the inpainting of the network | |
Parameters | |
---------- | |
batch : dict | |
image-mask batch, currently we assume the batchsize to be 1 | |
inpainter : nn.Module | |
the inpainting neural network | |
gpu_ids : str | |
the GPU ids of the machine to use. If only single GPU, use: "0," | |
modulo : int | |
pad the image to ensure dimension % modulo == 0 | |
n_iters : int | |
number of iterations of refinement for each scale | |
lr : float | |
learning rate | |
min_side : int | |
all sides of image on all scales should be >= min_side / sqrt(2) | |
max_scales : int | |
max number of downscaling scales for the image-mask pyramid | |
px_budget : int | |
pixels budget. Any image will be resized to satisfy height*width <= px_budget | |
Returns | |
------- | |
torch.Tensor | |
inpainted image of size (1,3,H,W) | |
""" | |
assert not inpainter.training | |
assert not inpainter.add_noise_kwargs | |
assert inpainter.concat_mask | |
gpu_ids = [f'cuda:{gpuid}' for gpuid in gpu_ids.replace(" ","").split(",") if gpuid.isdigit()] | |
n_resnet_blocks = 0 | |
first_resblock_ind = 0 | |
found_first_resblock = False | |
for idl in range(len(inpainter.generator.model)): | |
if isinstance(inpainter.generator.model[idl], FFCResnetBlock) or isinstance(inpainter.generator.model[idl], ResnetBlock): | |
n_resnet_blocks += 1 | |
found_first_resblock = True | |
elif not found_first_resblock: | |
first_resblock_ind += 1 | |
resblocks_per_gpu = n_resnet_blocks // len(gpu_ids) | |
devices = [torch.device(gpu_id) for gpu_id in gpu_ids] | |
# split the model into front, and rear parts | |
forward_front = inpainter.generator.model[0:first_resblock_ind] | |
forward_front.to(devices[0]) | |
forward_rears = [] | |
for idd in range(len(gpu_ids)): | |
if idd < len(gpu_ids) - 1: | |
forward_rears.append(inpainter.generator.model[first_resblock_ind + resblocks_per_gpu*(idd):first_resblock_ind+resblocks_per_gpu*(idd+1)]) | |
else: | |
forward_rears.append(inpainter.generator.model[first_resblock_ind + resblocks_per_gpu*(idd):]) | |
forward_rears[idd].to(devices[idd]) | |
ls_images, ls_masks = _get_image_mask_pyramid( | |
batch, | |
min_side, | |
max_scales, | |
px_budget | |
) | |
image_inpainted = None | |
for ids, (image, mask) in enumerate(zip(ls_images, ls_masks)): | |
orig_shape = image.shape[2:] | |
image = pad_tensor_to_modulo(image, modulo) | |
mask = pad_tensor_to_modulo(mask, modulo) | |
mask[mask >= 1e-8] = 1.0 | |
mask[mask < 1e-8] = 0.0 | |
image, mask = move_to_device(image, devices[0]), move_to_device(mask, devices[0]) | |
if image_inpainted is not None: | |
image_inpainted = move_to_device(image_inpainted, devices[-1]) | |
image_inpainted = _infer(image, mask, forward_front, forward_rears, image_inpainted, orig_shape, devices, ids, n_iters, lr) | |
image_inpainted = image_inpainted[:,:,:orig_shape[0], :orig_shape[1]] | |
# detach everything to save resources | |
image = image.detach().cpu() | |
mask = mask.detach().cpu() | |
return image_inpainted | |