Spaces:
Running
Running
#!/usr/bin/env python3 | |
import os | |
import cv2 | |
import numpy as np | |
import tqdm | |
from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset | |
from saicinpainting.evaluation.utils import load_yaml | |
def main(args): | |
config = load_yaml(args.config) | |
if not args.predictdir.endswith('/'): | |
args.predictdir += '/' | |
dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs) | |
os.makedirs(os.path.dirname(args.outpath), exist_ok=True) | |
for img_i in tqdm.trange(len(dataset)): | |
pred_fname = dataset.pred_filenames[img_i] | |
cur_out_fname = os.path.join(args.outpath, pred_fname[len(args.predictdir):]) | |
os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) | |
sample = dataset[img_i] | |
img = sample['image'] | |
mask = sample['mask'] | |
inpainted = sample['inpainted'] | |
inpainted_blurred = cv2.GaussianBlur(np.transpose(inpainted, (1, 2, 0)), | |
ksize=(args.k, args.k), | |
sigmaX=args.s, sigmaY=args.s, | |
borderType=cv2.BORDER_REFLECT) | |
cur_res = (1 - mask) * np.transpose(img, (1, 2, 0)) + mask * inpainted_blurred | |
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') | |
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) | |
cv2.imwrite(cur_out_fname, cur_res) | |
if __name__ == '__main__': | |
import argparse | |
aparser = argparse.ArgumentParser() | |
aparser.add_argument('config', type=str, help='Path to evaluation config') | |
aparser.add_argument('datadir', type=str, | |
help='Path to folder with images and masks (output of gen_mask_dataset.py)') | |
aparser.add_argument('predictdir', type=str, | |
help='Path to folder with predicts (e.g. predict_hifill_baseline.py)') | |
aparser.add_argument('outpath', type=str, help='Where to put results') | |
aparser.add_argument('-s', type=float, default=0.1, help='Gaussian blur sigma') | |
aparser.add_argument('-k', type=int, default=5, help='Kernel size in gaussian blur') | |
main(aparser.parse_args()) | |