Spaces:
Running
Running
#!/usr/bin/env python3 | |
import os | |
from argparse import ArgumentParser | |
def ssim_fid100_f1(metrics, fid_scale=100): | |
ssim = metrics.loc['total', 'ssim']['mean'] | |
fid = metrics.loc['total', 'fid']['mean'] | |
fid_rel = max(0, fid_scale - fid) / fid_scale | |
f1 = 2 * ssim * fid_rel / (ssim + fid_rel + 1e-3) | |
return f1 | |
def find_best_checkpoint(model_list, models_dir): | |
with open(model_list) as f: | |
models = [m.strip() for m in f.readlines()] | |
with open(f'{model_list}_best', 'w') as f: | |
for model in models: | |
print(model) | |
best_f1 = 0 | |
best_epoch = 0 | |
best_step = 0 | |
with open(os.path.join(models_dir, model, 'train.log')) as fm: | |
lines = fm.readlines() | |
for line_index in range(len(lines)): | |
line = lines[line_index] | |
if 'Validation metrics after epoch' in line: | |
sharp_index = line.index('#') | |
cur_ep = line[sharp_index + 1:] | |
comma_index = cur_ep.index(',') | |
cur_ep = int(cur_ep[:comma_index]) | |
total_index = line.index('total ') | |
step = int(line[total_index:].split()[1].strip()) | |
total_line = lines[line_index + 5] | |
if not total_line.startswith('total'): | |
continue | |
words = total_line.strip().split() | |
f1 = float(words[-1]) | |
print(f'\tEpoch: {cur_ep}, f1={f1}') | |
if f1 > best_f1: | |
best_f1 = f1 | |
best_epoch = cur_ep | |
best_step = step | |
f.write(f'{model}\t{best_epoch}\t{best_step}\t{best_f1}\n') | |
if __name__ == '__main__': | |
parser = ArgumentParser() | |
parser.add_argument('model_list') | |
parser.add_argument('models_dir') | |
args = parser.parse_args() | |
find_best_checkpoint(args.model_list, args.models_dir) | |