Spaces:
Running
Running
#!/usr/bin/env python3 | |
import os | |
import numpy as np | |
import tqdm | |
from skimage import io | |
from skimage.segmentation import mark_boundaries | |
from saicinpainting.evaluation.data import InpaintingDataset | |
from saicinpainting.evaluation.vis import save_item_for_vis | |
def save_mask_for_sidebyside(item, out_file): | |
mask = item['mask']# > 0.5 | |
if mask.ndim == 3: | |
mask = mask[0] | |
mask = np.clip(mask * 255, 0, 255).astype('uint8') | |
io.imsave(out_file, mask) | |
def save_img_for_sidebyside(item, out_file): | |
img = np.transpose(item['image'], (1, 2, 0)) | |
img = np.clip(img * 255, 0, 255).astype('uint8') | |
io.imsave(out_file, img) | |
def save_masked_img_for_sidebyside(item, out_file): | |
mask = item['mask'] | |
img = item['image'] | |
img = (1-mask) * img + mask | |
img = np.transpose(img, (1, 2, 0)) | |
img = np.clip(img * 255, 0, 255).astype('uint8') | |
io.imsave(out_file, img) | |
def main(args): | |
dataset = InpaintingDataset(args.datadir, img_suffix='.png') | |
area_bins = np.linspace(0, 1, args.area_bins + 1) | |
heights = [] | |
widths = [] | |
image_areas = [] | |
hole_areas = [] | |
hole_area_percents = [] | |
area_bins_count = np.zeros(args.area_bins) | |
area_bin_titles = [f'{area_bins[i] * 100:.0f}-{area_bins[i + 1] * 100:.0f}' for i in range(args.area_bins)] | |
bin2i = [[] for _ in range(args.area_bins)] | |
for i, item in enumerate(tqdm.tqdm(dataset)): | |
h, w = item['image'].shape[1:] | |
heights.append(h) | |
widths.append(w) | |
full_area = h * w | |
image_areas.append(full_area) | |
hole_area = (item['mask'] == 1).sum() | |
hole_areas.append(hole_area) | |
hole_percent = hole_area / full_area | |
hole_area_percents.append(hole_percent) | |
bin_i = np.clip(np.searchsorted(area_bins, hole_percent) - 1, 0, len(area_bins_count) - 1) | |
area_bins_count[bin_i] += 1 | |
bin2i[bin_i].append(i) | |
os.makedirs(args.outdir, exist_ok=True) | |
for bin_i in range(args.area_bins): | |
bindir = os.path.join(args.outdir, area_bin_titles[bin_i]) | |
os.makedirs(bindir, exist_ok=True) | |
bin_idx = bin2i[bin_i] | |
for sample_i in np.random.choice(bin_idx, size=min(len(bin_idx), args.samples_n), replace=False): | |
item = dataset[sample_i] | |
path = os.path.join(bindir, dataset.img_filenames[sample_i].split('/')[-1]) | |
save_masked_img_for_sidebyside(item, path) | |
if __name__ == '__main__': | |
import argparse | |
aparser = argparse.ArgumentParser() | |
aparser.add_argument('--datadir', type=str, | |
help='Path to folder with images and masks (output of gen_mask_dataset.py)') | |
aparser.add_argument('--outdir', type=str, help='Where to put results') | |
aparser.add_argument('--samples-n', type=int, default=10, | |
help='Number of sample images with masks to copy for visualization for each area bin') | |
aparser.add_argument('--area-bins', type=int, default=10, help='How many area bins to have') | |
main(aparser.parse_args()) | |