Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
from typing import Tuple | |
def resize_and_pad(image: np.ndarray, mask: np.ndarray, target_size: int = 512) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Resizes an image and its corresponding mask to have the longer side equal to `target_size` and pads them to make them | |
both have the same size. The resulting image and mask have dimensions (target_size, target_size). | |
Args: | |
image: A numpy array representing the image to resize and pad. | |
mask: A numpy array representing the mask to resize and pad. | |
target_size: An integer specifying the desired size of the longer side after resizing. | |
Returns: | |
A tuple containing two numpy arrays - the resized and padded image and the resized and padded mask. | |
""" | |
height, width, _ = image.shape | |
max_dim = max(height, width) | |
scale = target_size / max_dim | |
new_height = int(height * scale) | |
new_width = int(width * scale) | |
image_resized = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LINEAR) | |
mask_resized = cv2.resize(mask, (new_width, new_height), interpolation=cv2.INTER_LINEAR) | |
pad_height = target_size - new_height | |
pad_width = target_size - new_width | |
top_pad = pad_height // 2 | |
bottom_pad = pad_height - top_pad | |
left_pad = pad_width // 2 | |
right_pad = pad_width - left_pad | |
image_padded = np.pad(image_resized, ((top_pad, bottom_pad), (left_pad, right_pad), (0, 0)), mode='constant') | |
mask_padded = np.pad(mask_resized, ((top_pad, bottom_pad), (left_pad, right_pad)), mode='constant') | |
return image_padded, mask_padded, (top_pad, bottom_pad, left_pad, right_pad) | |
def recover_size(image_padded: np.ndarray, mask_padded: np.ndarray, orig_size: Tuple[int, int], | |
padding_factors: Tuple[int, int, int, int]) -> Tuple[np.ndarray, np.ndarray]: | |
""" | |
Resizes a padded and resized image and mask to the original size. | |
Args: | |
image_padded: A numpy array representing the padded and resized image. | |
mask_padded: A numpy array representing the padded and resized mask. | |
orig_size: A tuple containing two integers - the original height and width of the image before resizing and padding. | |
Returns: | |
A tuple containing two numpy arrays - the recovered image and the recovered mask with dimensions `orig_size`. | |
""" | |
h,w,c = image_padded.shape | |
top_pad, bottom_pad, left_pad, right_pad = padding_factors | |
image = image_padded[top_pad:h-bottom_pad, left_pad:w-right_pad, :] | |
mask = mask_padded[top_pad:h-bottom_pad, left_pad:w-right_pad] | |
image_resized = cv2.resize(image, orig_size[::-1], interpolation=cv2.INTER_LINEAR) | |
mask_resized = cv2.resize(mask, orig_size[::-1], interpolation=cv2.INTER_LINEAR) | |
return image_resized, mask_resized | |
if __name__ == '__main__': | |
# image = cv2.imread('example/boat.jpg') | |
# mask = cv2.imread('example/boat_mask_2.png', cv2.IMREAD_GRAYSCALE) | |
# image = cv2.imread('example/groceries.jpg') | |
# mask = cv2.imread('example/groceries_mask_2.png', cv2.IMREAD_GRAYSCALE) | |
# image = cv2.imread('example/bridge.jpg') | |
# mask = cv2.imread('example/bridge_mask_2.png', cv2.IMREAD_GRAYSCALE) | |
# image = cv2.imread('example/person_umbrella.jpg') | |
# mask = cv2.imread('example/person_umbrella_mask_2.png', cv2.IMREAD_GRAYSCALE) | |
# image = cv2.imread('example/hippopotamus.jpg') | |
# mask = cv2.imread('example/hippopotamus_mask_1.png', cv2.IMREAD_GRAYSCALE) | |
image = cv2.imread('/data1/yutao/projects/IAM/Inpaint-Anything/example/fill-anything/sample5.jpeg') | |
mask = cv2.imread('/data1/yutao/projects/IAM/Inpaint-Anything/example/fill-anything/sample5/mask.png', cv2.IMREAD_GRAYSCALE) | |
print(image.shape) | |
print(mask.shape) | |
cv2.imwrite('original_image.jpg', image) | |
cv2.imwrite('original_mask.jpg', mask) | |
image_padded, mask_padded, padding_factors = resize_and_pad(image, mask) | |
cv2.imwrite('padded_image.png', image_padded) | |
cv2.imwrite('padded_mask.png', mask_padded) | |
print(image_padded.shape, mask_padded.shape, padding_factors) | |
# ^ ------------------------------------------------------------------------------------ | |
# ^ Please conduct inpainting or filling here on the cropped image with the cropped mask | |
# ^ ------------------------------------------------------------------------------------ | |
# resize and pad the image and mask | |
# perform some operation on the 512x512 image and mask | |
# ... | |
# recover the image and mask to the original size | |
height, width, _ = image.shape | |
image_resized, mask_resized = recover_size(image_padded, mask_padded, (height, width), padding_factors) | |
# save the resized and recovered image and mask | |
cv2.imwrite('resized_and_padded_image.png', image_padded) | |
cv2.imwrite('resized_and_padded_mask.png', mask_padded) | |
cv2.imwrite('recovered_image.png', image_resized) | |
cv2.imwrite('recovered_mask.png', mask_resized) | |