Spaces:
Running
Running
#!/usr/bin/env python3 | |
import os | |
import numpy as np | |
import tqdm | |
from scipy.ndimage.morphology import distance_transform_edt | |
from saicinpainting.evaluation.data import InpaintingDataset | |
from saicinpainting.evaluation.vis import save_item_for_vis | |
def main(args): | |
dataset = InpaintingDataset(args.datadir, img_suffix='.png') | |
area_bins = np.linspace(0, 1, args.area_bins + 1) | |
heights = [] | |
widths = [] | |
image_areas = [] | |
hole_areas = [] | |
hole_area_percents = [] | |
known_pixel_distances = [] | |
area_bins_count = np.zeros(args.area_bins) | |
area_bin_titles = [f'{area_bins[i] * 100:.0f}-{area_bins[i + 1] * 100:.0f}' for i in range(args.area_bins)] | |
bin2i = [[] for _ in range(args.area_bins)] | |
for i, item in enumerate(tqdm.tqdm(dataset)): | |
h, w = item['image'].shape[1:] | |
heights.append(h) | |
widths.append(w) | |
full_area = h * w | |
image_areas.append(full_area) | |
bin_mask = item['mask'] > 0.5 | |
hole_area = bin_mask.sum() | |
hole_areas.append(hole_area) | |
hole_percent = hole_area / full_area | |
hole_area_percents.append(hole_percent) | |
bin_i = np.clip(np.searchsorted(area_bins, hole_percent) - 1, 0, len(area_bins_count) - 1) | |
area_bins_count[bin_i] += 1 | |
bin2i[bin_i].append(i) | |
cur_dist = distance_transform_edt(bin_mask) | |
cur_dist_inside_mask = cur_dist[bin_mask] | |
known_pixel_distances.append(cur_dist_inside_mask.mean()) | |
os.makedirs(args.outdir, exist_ok=True) | |
with open(os.path.join(args.outdir, 'summary.txt'), 'w') as f: | |
f.write(f'''Location: {args.datadir} | |
Number of samples: {len(dataset)} | |
Image height: min {min(heights):5d} max {max(heights):5d} mean {np.mean(heights):.2f} | |
Image width: min {min(widths):5d} max {max(widths):5d} mean {np.mean(widths):.2f} | |
Image area: min {min(image_areas):7d} max {max(image_areas):7d} mean {np.mean(image_areas):.2f} | |
Hole area: min {min(hole_areas):7d} max {max(hole_areas):7d} mean {np.mean(hole_areas):.2f} | |
Hole area %: min {min(hole_area_percents) * 100:2.2f} max {max(hole_area_percents) * 100:2.2f} mean {np.mean(hole_area_percents) * 100:2.2f} | |
Dist 2known: min {min(known_pixel_distances):2.2f} max {max(known_pixel_distances):2.2f} mean {np.mean(known_pixel_distances):2.2f} median {np.median(known_pixel_distances):2.2f} | |
Stats by hole area %: | |
''') | |
for bin_i in range(args.area_bins): | |
f.write(f'{area_bin_titles[bin_i]}%: ' | |
f'samples number {area_bins_count[bin_i]}, ' | |
f'{area_bins_count[bin_i] / len(dataset) * 100:.1f}%\n') | |
for bin_i in range(args.area_bins): | |
bindir = os.path.join(args.outdir, 'samples', area_bin_titles[bin_i]) | |
os.makedirs(bindir, exist_ok=True) | |
bin_idx = bin2i[bin_i] | |
for sample_i in np.random.choice(bin_idx, size=min(len(bin_idx), args.samples_n), replace=False): | |
save_item_for_vis(dataset[sample_i], os.path.join(bindir, f'{sample_i}.png')) | |
if __name__ == '__main__': | |
import argparse | |
aparser = argparse.ArgumentParser() | |
aparser.add_argument('datadir', type=str, | |
help='Path to folder with images and masks (output of gen_mask_dataset.py)') | |
aparser.add_argument('outdir', type=str, help='Where to put results') | |
aparser.add_argument('--samples-n', type=int, default=10, | |
help='Number of sample images with masks to copy for visualization for each area bin') | |
aparser.add_argument('--area-bins', type=int, default=10, help='How many area bins to have') | |
main(aparser.parse_args()) | |