Spaces:
Running
Running
#!/usr/bin/env python3 | |
import glob | |
import logging | |
import os | |
import shutil | |
import sys | |
import traceback | |
from saicinpainting.evaluation.data import load_image | |
from saicinpainting.evaluation.utils import move_to_device | |
os.environ['OMP_NUM_THREADS'] = '1' | |
os.environ['OPENBLAS_NUM_THREADS'] = '1' | |
os.environ['MKL_NUM_THREADS'] = '1' | |
os.environ['VECLIB_MAXIMUM_THREADS'] = '1' | |
os.environ['NUMEXPR_NUM_THREADS'] = '1' | |
import cv2 | |
import hydra | |
import numpy as np | |
import torch | |
import tqdm | |
import yaml | |
from omegaconf import OmegaConf | |
from torch.utils.data._utils.collate import default_collate | |
from saicinpainting.training.data.datasets import make_default_val_dataset | |
from saicinpainting.training.trainers import load_checkpoint | |
from saicinpainting.utils import register_debug_signal_handlers | |
LOGGER = logging.getLogger(__name__) | |
def main(args): | |
try: | |
if not args.indir.endswith('/'): | |
args.indir += '/' | |
for in_img in glob.glob(os.path.join(args.indir, '**', '*' + args.img_suffix), recursive=True): | |
if 'mask' in os.path.basename(in_img): | |
continue | |
out_img_path = os.path.join(args.outdir, os.path.splitext(in_img[len(args.indir):])[0] + '.png') | |
out_mask_path = f'{os.path.splitext(out_img_path)[0]}_mask.png' | |
os.makedirs(os.path.dirname(out_img_path), exist_ok=True) | |
img = load_image(in_img) | |
height, width = img.shape[1:] | |
pad_h, pad_w = int(height * args.coef / 2), int(width * args.coef / 2) | |
mask = np.zeros((height, width), dtype='uint8') | |
if args.expand: | |
img = np.pad(img, ((0, 0), (pad_h, pad_h), (pad_w, pad_w))) | |
mask = np.pad(mask, ((pad_h, pad_h), (pad_w, pad_w)), mode='constant', constant_values=255) | |
else: | |
mask[:pad_h] = 255 | |
mask[-pad_h:] = 255 | |
mask[:, :pad_w] = 255 | |
mask[:, -pad_w:] = 255 | |
# img = np.pad(img, ((0, 0), (pad_h * 2, pad_h * 2), (pad_w * 2, pad_w * 2)), mode='symmetric') | |
# mask = np.pad(mask, ((pad_h * 2, pad_h * 2), (pad_w * 2, pad_w * 2)), mode = 'symmetric') | |
img = np.clip(np.transpose(img, (1, 2, 0)) * 255, 0, 255).astype('uint8') | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
cv2.imwrite(out_img_path, img) | |
cv2.imwrite(out_mask_path, mask) | |
except KeyboardInterrupt: | |
LOGGER.warning('Interrupted by user') | |
except Exception as ex: | |
LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') | |
sys.exit(1) | |
if __name__ == '__main__': | |
import argparse | |
aparser = argparse.ArgumentParser() | |
aparser.add_argument('indir', type=str, help='Root directory with images') | |
aparser.add_argument('outdir', type=str, help='Where to store results') | |
aparser.add_argument('--img-suffix', type=str, default='.png', help='Input image extension') | |
aparser.add_argument('--expand', action='store_true', help='Generate mask by padding (true) or by cropping (false)') | |
aparser.add_argument('--coef', type=float, default=0.2, help='How much to crop/expand in order to get masks') | |
main(aparser.parse_args()) | |