Inpaint-Maething / utils /visualize_mask_on_img.py
pg56714's picture
Upload 13 files
7e0cd5c verified
import cv2
import sys
import argparse
import numpy as np
from PIL import Image
from pathlib import Path
from matplotlib import pyplot as plt
from typing import Any, Dict, List
import glob
from utils import load_img_to_array, show_mask
def setup_args(parser):
parser.add_argument(
"--input_img", type=str, required=True,
help="Path to a single input img",
)
parser.add_argument(
"--input_mask_glob", type=str, required=True,
help="Glob to input masks",
)
parser.add_argument(
"--output_dir", type=str, required=True,
help="Output path to the directory with results.",
)
if __name__ == "__main__":
"""Example usage:
python visual_mask_on_img.py \
--input_img FA_demo/FA1_dog.png \
--input_mask_glob "results/FA1_dog/mask*.png" \
--output_dir results
"""
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
img = load_img_to_array(args.input_img)
img_stem = Path(args.input_img).stem
mask_ps = sorted(glob.glob(args.input_mask_glob))
out_dir = Path(args.output_dir) / img_stem
out_dir.mkdir(parents=True, exist_ok=True)
for mask_p in mask_ps:
mask = load_img_to_array(mask_p)
mask = mask.astype(np.uint8)
# path to the results
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
# save the masked image
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
show_mask(plt.gca(), mask, random_color=False)
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
plt.close()