Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- .gitignore +21 -0
- LICENSE +201 -0
- __init__.py +0 -0
- app.py +462 -0
- fill_anything.py +137 -0
- lama_inpaint.py +200 -0
- remove_anything.py +132 -0
- replace_anything.py +136 -0
- requirements.txt +33 -0
- sam_segment.py +133 -0
- stable_diffusion_inpaint.py +121 -0
.gitignore
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python byte code, etc.
|
2 |
+
__pycache__/
|
3 |
+
|
4 |
+
# C/C++ object files/libraries
|
5 |
+
*.o
|
6 |
+
*.so
|
7 |
+
|
8 |
+
# macOS
|
9 |
+
**/.DS_Store
|
10 |
+
|
11 |
+
# tmp
|
12 |
+
~*
|
13 |
+
|
14 |
+
# pretrained_models
|
15 |
+
pretrained_models/big-lama
|
16 |
+
# pytracking/pretrain/
|
17 |
+
*.pth
|
18 |
+
|
19 |
+
results/*
|
20 |
+
|
21 |
+
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
|
5 |
+
# os.chdir("../")
|
6 |
+
import cv2
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
from pathlib import Path
|
10 |
+
from matplotlib import pyplot as plt
|
11 |
+
import torch
|
12 |
+
import tempfile
|
13 |
+
|
14 |
+
from stable_diffusion_inpaint import fill_img_with_sd, replace_img_with_sd
|
15 |
+
from lama_inpaint import (
|
16 |
+
inpaint_img_with_lama,
|
17 |
+
build_lama_model,
|
18 |
+
inpaint_img_with_builded_lama,
|
19 |
+
)
|
20 |
+
from utils import (
|
21 |
+
load_img_to_array,
|
22 |
+
save_array_to_img,
|
23 |
+
dilate_mask,
|
24 |
+
show_mask,
|
25 |
+
show_points,
|
26 |
+
)
|
27 |
+
from PIL import Image
|
28 |
+
from segment_anything import SamPredictor, sam_model_registry
|
29 |
+
import argparse
|
30 |
+
|
31 |
+
|
32 |
+
def setup_args(parser):
|
33 |
+
parser.add_argument(
|
34 |
+
"--lama_config",
|
35 |
+
type=str,
|
36 |
+
default="./lama/configs/prediction/default.yaml",
|
37 |
+
help="The path to the config file of lama model. "
|
38 |
+
"Default: the config of big-lama",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--lama_ckpt",
|
42 |
+
type=str,
|
43 |
+
default="pretrained_models/big-lama",
|
44 |
+
help="The path to the lama checkpoint.",
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--sam_ckpt",
|
48 |
+
type=str,
|
49 |
+
default="./pretrained_models/sam_vit_h_4b8939.pth",
|
50 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def mkstemp(suffix, dir=None):
|
55 |
+
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
|
56 |
+
os.close(fd)
|
57 |
+
return Path(path)
|
58 |
+
|
59 |
+
|
60 |
+
def get_sam_feat(img):
|
61 |
+
model["sam"].set_image(img)
|
62 |
+
features = model["sam"].features
|
63 |
+
orig_h = model["sam"].orig_h
|
64 |
+
orig_w = model["sam"].orig_w
|
65 |
+
input_h = model["sam"].input_h
|
66 |
+
input_w = model["sam"].input_w
|
67 |
+
model["sam"].reset_image()
|
68 |
+
return features, orig_h, orig_w, input_h, input_w
|
69 |
+
|
70 |
+
|
71 |
+
def get_fill_img_with_sd(image, mask, image_resolution, text_prompt):
|
72 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
73 |
+
if len(mask.shape) == 3:
|
74 |
+
mask = mask[:, :, 0]
|
75 |
+
np_image = np.array(image, dtype=np.uint8)
|
76 |
+
H, W, C = np_image.shape
|
77 |
+
np_image = HWC3(np_image)
|
78 |
+
np_image = resize_image(np_image, image_resolution)
|
79 |
+
mask = cv2.resize(
|
80 |
+
mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST
|
81 |
+
)
|
82 |
+
|
83 |
+
img_fill = fill_img_with_sd(np_image, mask, text_prompt, device=device)
|
84 |
+
img_fill = img_fill.astype(np.uint8)
|
85 |
+
return img_fill
|
86 |
+
|
87 |
+
|
88 |
+
def get_replace_img_with_sd(image, mask, image_resolution, text_prompt):
|
89 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
90 |
+
if len(mask.shape) == 3:
|
91 |
+
mask = mask[:, :, 0]
|
92 |
+
np_image = np.array(image, dtype=np.uint8)
|
93 |
+
H, W, C = np_image.shape
|
94 |
+
np_image = HWC3(np_image)
|
95 |
+
np_image = resize_image(np_image, image_resolution)
|
96 |
+
mask = cv2.resize(
|
97 |
+
mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST
|
98 |
+
)
|
99 |
+
|
100 |
+
img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device)
|
101 |
+
img_replaced = img_replaced.astype(np.uint8)
|
102 |
+
return img_replaced
|
103 |
+
|
104 |
+
|
105 |
+
def HWC3(x):
|
106 |
+
assert x.dtype == np.uint8
|
107 |
+
if x.ndim == 2:
|
108 |
+
x = x[:, :, None]
|
109 |
+
assert x.ndim == 3
|
110 |
+
H, W, C = x.shape
|
111 |
+
assert C == 1 or C == 3 or C == 4
|
112 |
+
if C == 3:
|
113 |
+
return x
|
114 |
+
if C == 1:
|
115 |
+
return np.concatenate([x, x, x], axis=2)
|
116 |
+
if C == 4:
|
117 |
+
color = x[:, :, 0:3].astype(np.float32)
|
118 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
119 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
120 |
+
y = y.clip(0, 255).astype(np.uint8)
|
121 |
+
return y
|
122 |
+
|
123 |
+
|
124 |
+
def resize_image(input_image, resolution):
|
125 |
+
H, W, C = input_image.shape
|
126 |
+
k = float(resolution) / min(H, W)
|
127 |
+
H = int(np.round(H * k / 64.0)) * 64
|
128 |
+
W = int(np.round(W * k / 64.0)) * 64
|
129 |
+
img = cv2.resize(
|
130 |
+
input_image,
|
131 |
+
(W, H),
|
132 |
+
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA,
|
133 |
+
)
|
134 |
+
return img
|
135 |
+
|
136 |
+
|
137 |
+
def resize_points(clicked_points, original_shape, resolution):
|
138 |
+
original_height, original_width, _ = original_shape
|
139 |
+
original_height = float(original_height)
|
140 |
+
original_width = float(original_width)
|
141 |
+
|
142 |
+
scale_factor = float(resolution) / min(original_height, original_width)
|
143 |
+
resized_points = []
|
144 |
+
|
145 |
+
for point in clicked_points:
|
146 |
+
x, y, lab = point
|
147 |
+
resized_x = int(round(x * scale_factor))
|
148 |
+
resized_y = int(round(y * scale_factor))
|
149 |
+
resized_point = (resized_x, resized_y, lab)
|
150 |
+
resized_points.append(resized_point)
|
151 |
+
|
152 |
+
return resized_points
|
153 |
+
|
154 |
+
|
155 |
+
def get_click_mask(
|
156 |
+
clicked_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size
|
157 |
+
):
|
158 |
+
# model['sam'].set_image(image)
|
159 |
+
model["sam"].is_image_set = True
|
160 |
+
model["sam"].features = features
|
161 |
+
model["sam"].orig_h = orig_h
|
162 |
+
model["sam"].orig_w = orig_w
|
163 |
+
model["sam"].input_h = input_h
|
164 |
+
model["sam"].input_w = input_w
|
165 |
+
|
166 |
+
# Separate the points and labels
|
167 |
+
points, labels = zip(*[(point[:2], point[2]) for point in clicked_points])
|
168 |
+
|
169 |
+
# Convert the points and labels to numpy arrays
|
170 |
+
input_point = np.array(points)
|
171 |
+
input_label = np.array(labels)
|
172 |
+
|
173 |
+
masks, _, _ = model["sam"].predict(
|
174 |
+
point_coords=input_point,
|
175 |
+
point_labels=input_label,
|
176 |
+
multimask_output=False,
|
177 |
+
)
|
178 |
+
if dilate_kernel_size is not None:
|
179 |
+
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks]
|
180 |
+
else:
|
181 |
+
masks = [mask for mask in masks]
|
182 |
+
|
183 |
+
return masks
|
184 |
+
|
185 |
+
|
186 |
+
def process_image_click(
|
187 |
+
original_image,
|
188 |
+
point_prompt,
|
189 |
+
clicked_points,
|
190 |
+
image_resolution,
|
191 |
+
features,
|
192 |
+
orig_h,
|
193 |
+
orig_w,
|
194 |
+
input_h,
|
195 |
+
input_w,
|
196 |
+
dilate_kernel_size,
|
197 |
+
evt: gr.SelectData,
|
198 |
+
):
|
199 |
+
if clicked_points is None:
|
200 |
+
clicked_points = []
|
201 |
+
|
202 |
+
# print("Received click event:", evt)
|
203 |
+
if original_image is None:
|
204 |
+
# print("No image loaded.")
|
205 |
+
return None, clicked_points, None
|
206 |
+
|
207 |
+
clicked_coords = evt.index
|
208 |
+
if clicked_coords is None:
|
209 |
+
# print("No valid coordinates received.")
|
210 |
+
return None, clicked_points, None
|
211 |
+
|
212 |
+
x, y = clicked_coords
|
213 |
+
label = point_prompt
|
214 |
+
lab = 1 if label == "Foreground Point" else 0
|
215 |
+
clicked_points.append((x, y, lab))
|
216 |
+
# print("Updated points list:", clicked_points)
|
217 |
+
|
218 |
+
input_image = np.array(original_image, dtype=np.uint8)
|
219 |
+
H, W, C = input_image.shape
|
220 |
+
input_image = HWC3(input_image)
|
221 |
+
img = resize_image(input_image, image_resolution)
|
222 |
+
# print("Processed image size:", img.shape)
|
223 |
+
|
224 |
+
resized_points = resize_points(clicked_points, input_image.shape, image_resolution)
|
225 |
+
mask_click_np = get_click_mask(
|
226 |
+
resized_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size
|
227 |
+
)
|
228 |
+
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0
|
229 |
+
mask_image = HWC3(mask_click_np.astype(np.uint8))
|
230 |
+
mask_image = cv2.resize(mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
|
231 |
+
# print("Mask image prepared.")
|
232 |
+
|
233 |
+
edited_image = input_image
|
234 |
+
for x, y, lab in clicked_points:
|
235 |
+
color = (255, 0, 0) if lab == 1 else (0, 0, 255)
|
236 |
+
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)
|
237 |
+
|
238 |
+
opacity_mask = 0.75
|
239 |
+
opacity_edited = 1.0
|
240 |
+
overlay_image = cv2.addWeighted(
|
241 |
+
edited_image,
|
242 |
+
opacity_edited,
|
243 |
+
(mask_image * np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8),
|
244 |
+
opacity_mask,
|
245 |
+
0,
|
246 |
+
)
|
247 |
+
|
248 |
+
no_mask_overlay = edited_image.copy()
|
249 |
+
|
250 |
+
return no_mask_overlay, overlay_image, clicked_points, mask_image
|
251 |
+
|
252 |
+
|
253 |
+
def image_upload(image, image_resolution):
|
254 |
+
if image is None:
|
255 |
+
return None, None, None, None, None, None
|
256 |
+
else:
|
257 |
+
np_image = np.array(image, dtype=np.uint8)
|
258 |
+
H, W, C = np_image.shape
|
259 |
+
np_image = HWC3(np_image)
|
260 |
+
np_image = resize_image(np_image, image_resolution)
|
261 |
+
features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image)
|
262 |
+
return image, features, orig_h, orig_w, input_h, input_w
|
263 |
+
|
264 |
+
|
265 |
+
def get_inpainted_img(image, mask, image_resolution):
|
266 |
+
lama_config = args.lama_config
|
267 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
268 |
+
if len(mask.shape) == 3:
|
269 |
+
mask = mask[:, :, 0]
|
270 |
+
img_inpainted = inpaint_img_with_builded_lama(
|
271 |
+
model["lama"], image, mask, lama_config, device=device
|
272 |
+
)
|
273 |
+
return img_inpainted
|
274 |
+
|
275 |
+
|
276 |
+
# get args
|
277 |
+
parser = argparse.ArgumentParser()
|
278 |
+
setup_args(parser)
|
279 |
+
args = parser.parse_args(sys.argv[1:])
|
280 |
+
# build models
|
281 |
+
model = {}
|
282 |
+
# build the sam model
|
283 |
+
model_type = "vit_h"
|
284 |
+
ckpt_p = args.sam_ckpt
|
285 |
+
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
|
286 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
287 |
+
model_sam.to(device=device)
|
288 |
+
model["sam"] = SamPredictor(model_sam)
|
289 |
+
|
290 |
+
# build the lama model
|
291 |
+
lama_config = args.lama_config
|
292 |
+
lama_ckpt = args.lama_ckpt
|
293 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
294 |
+
model["lama"] = build_lama_model(lama_config, lama_ckpt, device=device)
|
295 |
+
|
296 |
+
button_size = (100, 50)
|
297 |
+
with gr.Blocks() as demo:
|
298 |
+
clicked_points = gr.State([])
|
299 |
+
# origin_image = gr.State(None)
|
300 |
+
click_mask = gr.State(None)
|
301 |
+
features = gr.State(None)
|
302 |
+
orig_h = gr.State(None)
|
303 |
+
orig_w = gr.State(None)
|
304 |
+
input_h = gr.State(None)
|
305 |
+
input_w = gr.State(None)
|
306 |
+
|
307 |
+
with gr.Row():
|
308 |
+
with gr.Column(variant="panel"):
|
309 |
+
with gr.Row():
|
310 |
+
gr.Markdown("## Upload an image and click the region you want to edit.")
|
311 |
+
with gr.Row():
|
312 |
+
source_image_click = gr.Image(
|
313 |
+
type="numpy",
|
314 |
+
interactive=True,
|
315 |
+
label="Upload and Edit Image",
|
316 |
+
)
|
317 |
+
|
318 |
+
image_edit_complete = gr.Image(
|
319 |
+
type="numpy",
|
320 |
+
interactive=False,
|
321 |
+
label="Editing Complete",
|
322 |
+
)
|
323 |
+
with gr.Row():
|
324 |
+
point_prompt = gr.Radio(
|
325 |
+
choices=["Foreground Point", "Background Point"],
|
326 |
+
value="Foreground Point",
|
327 |
+
label="Point Label",
|
328 |
+
interactive=True,
|
329 |
+
show_label=False,
|
330 |
+
)
|
331 |
+
image_resolution = gr.Slider(
|
332 |
+
label="Image Resolution",
|
333 |
+
minimum=256,
|
334 |
+
maximum=768,
|
335 |
+
value=512,
|
336 |
+
step=64,
|
337 |
+
)
|
338 |
+
dilate_kernel_size = gr.Slider(
|
339 |
+
label="Dilate Kernel Size", minimum=0, maximum=30, value=15, step=1
|
340 |
+
)
|
341 |
+
with gr.Column(variant="panel"):
|
342 |
+
with gr.Row():
|
343 |
+
gr.Markdown("## Control Panel")
|
344 |
+
text_prompt = gr.Textbox(label="Text Prompt")
|
345 |
+
lama = gr.Button("Inpaint Image", variant="primary")
|
346 |
+
fill_sd = gr.Button("Fill Anything with SD", variant="primary")
|
347 |
+
replace_sd = gr.Button("Replace Anything with SD", variant="primary")
|
348 |
+
clear_button_image = gr.Button(value="Reset", variant="secondary")
|
349 |
+
|
350 |
+
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
|
351 |
+
with gr.Row(variant="panel"):
|
352 |
+
with gr.Column():
|
353 |
+
with gr.Row():
|
354 |
+
gr.Markdown("## Mask")
|
355 |
+
with gr.Row():
|
356 |
+
click_mask = gr.Image(
|
357 |
+
type="numpy",
|
358 |
+
label="Click Mask",
|
359 |
+
interactive=False,
|
360 |
+
)
|
361 |
+
with gr.Column():
|
362 |
+
with gr.Row():
|
363 |
+
gr.Markdown("## Image Removed with Mask")
|
364 |
+
with gr.Row():
|
365 |
+
img_rm_with_mask = gr.Image(
|
366 |
+
type="numpy",
|
367 |
+
label="Image Removed with Mask",
|
368 |
+
interactive=False,
|
369 |
+
)
|
370 |
+
|
371 |
+
with gr.Column():
|
372 |
+
with gr.Row():
|
373 |
+
gr.Markdown("## Fill Anything with Mask")
|
374 |
+
with gr.Row():
|
375 |
+
img_fill_with_mask = gr.Image(
|
376 |
+
type="numpy",
|
377 |
+
label="Image Fill Anything with Mask",
|
378 |
+
interactive=False,
|
379 |
+
)
|
380 |
+
|
381 |
+
with gr.Column():
|
382 |
+
with gr.Row():
|
383 |
+
gr.Markdown("## Replace Anything with Mask")
|
384 |
+
with gr.Row():
|
385 |
+
img_replace_with_mask = gr.Image(
|
386 |
+
type="numpy",
|
387 |
+
label="Image Replace Anything with Mask",
|
388 |
+
interactive=False,
|
389 |
+
)
|
390 |
+
|
391 |
+
source_image_click.upload(
|
392 |
+
image_upload,
|
393 |
+
inputs=[source_image_click, image_resolution],
|
394 |
+
outputs=[source_image_click, features, orig_h, orig_w, input_h, input_w],
|
395 |
+
)
|
396 |
+
|
397 |
+
source_image_click.select(
|
398 |
+
process_image_click,
|
399 |
+
inputs=[
|
400 |
+
source_image_click,
|
401 |
+
point_prompt,
|
402 |
+
clicked_points,
|
403 |
+
image_resolution,
|
404 |
+
features,
|
405 |
+
orig_h,
|
406 |
+
orig_w,
|
407 |
+
input_h,
|
408 |
+
input_w,
|
409 |
+
dilate_kernel_size,
|
410 |
+
],
|
411 |
+
outputs=[source_image_click, image_edit_complete, clicked_points, click_mask],
|
412 |
+
show_progress=True,
|
413 |
+
queue=True,
|
414 |
+
)
|
415 |
+
|
416 |
+
lama.click(
|
417 |
+
get_inpainted_img,
|
418 |
+
inputs=[source_image_click, click_mask, image_resolution],
|
419 |
+
outputs=[img_rm_with_mask],
|
420 |
+
)
|
421 |
+
|
422 |
+
fill_sd.click(
|
423 |
+
get_fill_img_with_sd,
|
424 |
+
inputs=[source_image_click, click_mask, image_resolution, text_prompt],
|
425 |
+
outputs=[img_fill_with_mask],
|
426 |
+
)
|
427 |
+
|
428 |
+
replace_sd.click(
|
429 |
+
get_replace_img_with_sd,
|
430 |
+
inputs=[source_image_click, click_mask, image_resolution, text_prompt],
|
431 |
+
outputs=[img_replace_with_mask],
|
432 |
+
)
|
433 |
+
|
434 |
+
def reset(*args):
|
435 |
+
return [None for _ in args]
|
436 |
+
|
437 |
+
clear_button_image.click(
|
438 |
+
reset,
|
439 |
+
inputs=[
|
440 |
+
source_image_click,
|
441 |
+
image_edit_complete,
|
442 |
+
clicked_points,
|
443 |
+
click_mask,
|
444 |
+
features,
|
445 |
+
img_rm_with_mask,
|
446 |
+
img_fill_with_mask,
|
447 |
+
img_replace_with_mask,
|
448 |
+
],
|
449 |
+
outputs=[
|
450 |
+
source_image_click,
|
451 |
+
image_edit_complete,
|
452 |
+
clicked_points,
|
453 |
+
click_mask,
|
454 |
+
features,
|
455 |
+
img_rm_with_mask,
|
456 |
+
img_fill_with_mask,
|
457 |
+
img_replace_with_mask,
|
458 |
+
],
|
459 |
+
)
|
460 |
+
|
461 |
+
if __name__ == "__main__":
|
462 |
+
demo.launch(debug=False, show_error=True)
|
fill_anything.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from pathlib import Path
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
from typing import Any, Dict, List
|
9 |
+
|
10 |
+
from sam_segment import predict_masks_with_sam
|
11 |
+
from stable_diffusion_inpaint import fill_img_with_sd
|
12 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
13 |
+
show_mask, show_points, get_clicked_point
|
14 |
+
|
15 |
+
|
16 |
+
def setup_args(parser):
|
17 |
+
parser.add_argument(
|
18 |
+
"--input_img", type=str, required=True,
|
19 |
+
help="Path to a single input img",
|
20 |
+
)
|
21 |
+
parser.add_argument(
|
22 |
+
"--coords_type", type=str, required=True,
|
23 |
+
default="key_in", choices=["click", "key_in"],
|
24 |
+
help="The way to select coords",
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--point_coords", type=float, nargs='+', required=True,
|
28 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"--point_labels", type=int, nargs='+', required=True,
|
32 |
+
help="The labels of the point prompt, 1 or 0.",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"--text_prompt", type=str, required=True,
|
36 |
+
help="Text prompt",
|
37 |
+
)
|
38 |
+
parser.add_argument(
|
39 |
+
"--dilate_kernel_size", type=int, default=None,
|
40 |
+
help="Dilate kernel size. Default: None",
|
41 |
+
)
|
42 |
+
parser.add_argument(
|
43 |
+
"--output_dir", type=str, required=True,
|
44 |
+
help="Output path to the directory with results.",
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--sam_model_type", type=str,
|
48 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b', 'vit_t'],
|
49 |
+
help="The type of sam model to load. Default: 'vit_h"
|
50 |
+
)
|
51 |
+
parser.add_argument(
|
52 |
+
"--sam_ckpt", type=str, required=True,
|
53 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"--seed", type=int,
|
57 |
+
help="Specify seed for reproducibility.",
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--deterministic", action="store_true",
|
61 |
+
help="Use deterministic algorithms for reproducibility.",
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
"""Example usage:
|
67 |
+
python fill_anything.py \
|
68 |
+
--input_img FA_demo/FA1_dog.png \
|
69 |
+
--coords_type key_in \
|
70 |
+
--point_coords 750 500 \
|
71 |
+
--point_labels 1 \
|
72 |
+
--text_prompt "a teddy bear on a bench" \
|
73 |
+
--dilate_kernel_size 15 \
|
74 |
+
--output_dir ./results \
|
75 |
+
--sam_model_type "vit_h" \
|
76 |
+
--sam_ckpt sam_vit_h_4b8939.pth
|
77 |
+
"""
|
78 |
+
parser = argparse.ArgumentParser()
|
79 |
+
setup_args(parser)
|
80 |
+
args = parser.parse_args(sys.argv[1:])
|
81 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
82 |
+
|
83 |
+
if args.coords_type == "click":
|
84 |
+
latest_coords = get_clicked_point(args.input_img)
|
85 |
+
elif args.coords_type == "key_in":
|
86 |
+
latest_coords = args.point_coords
|
87 |
+
img = load_img_to_array(args.input_img)
|
88 |
+
|
89 |
+
masks, _, _ = predict_masks_with_sam(
|
90 |
+
img,
|
91 |
+
[latest_coords],
|
92 |
+
args.point_labels,
|
93 |
+
model_type=args.sam_model_type,
|
94 |
+
ckpt_p=args.sam_ckpt,
|
95 |
+
device=device,
|
96 |
+
)
|
97 |
+
masks = masks.astype(np.uint8) * 255
|
98 |
+
|
99 |
+
# dilate mask to avoid unmasked edge effect
|
100 |
+
if args.dilate_kernel_size is not None:
|
101 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
102 |
+
|
103 |
+
# visualize the segmentation results
|
104 |
+
img_stem = Path(args.input_img).stem
|
105 |
+
out_dir = Path(args.output_dir) / img_stem
|
106 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
107 |
+
for idx, mask in enumerate(masks):
|
108 |
+
# path to the results
|
109 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
110 |
+
img_points_p = out_dir / f"with_points.png"
|
111 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
112 |
+
|
113 |
+
# save the mask
|
114 |
+
save_array_to_img(mask, mask_p)
|
115 |
+
|
116 |
+
# save the pointed and masked image
|
117 |
+
dpi = plt.rcParams['figure.dpi']
|
118 |
+
height, width = img.shape[:2]
|
119 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
120 |
+
plt.imshow(img)
|
121 |
+
plt.axis('off')
|
122 |
+
show_points(plt.gca(), [latest_coords], args.point_labels,
|
123 |
+
size=(width*0.04)**2)
|
124 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
125 |
+
show_mask(plt.gca(), mask, random_color=False)
|
126 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
127 |
+
plt.close()
|
128 |
+
|
129 |
+
# fill the masked image
|
130 |
+
for idx, mask in enumerate(masks):
|
131 |
+
if args.seed is not None:
|
132 |
+
torch.manual_seed(args.seed)
|
133 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
134 |
+
img_filled_p = out_dir / f"filled_with_{Path(mask_p).name}"
|
135 |
+
img_filled = fill_img_with_sd(
|
136 |
+
img, mask, args.text_prompt, device=device)
|
137 |
+
save_array_to_img(img_filled, img_filled_p)
|
lama_inpaint.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import yaml
|
6 |
+
import glob
|
7 |
+
import argparse
|
8 |
+
from PIL import Image
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
13 |
+
os.environ['OPENBLAS_NUM_THREADS'] = '1'
|
14 |
+
os.environ['MKL_NUM_THREADS'] = '1'
|
15 |
+
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
|
16 |
+
os.environ['NUMEXPR_NUM_THREADS'] = '1'
|
17 |
+
|
18 |
+
sys.path.insert(0, str(Path(__file__).resolve().parent / "lama"))
|
19 |
+
from saicinpainting.evaluation.utils import move_to_device
|
20 |
+
from saicinpainting.training.trainers import load_checkpoint
|
21 |
+
from saicinpainting.evaluation.data import pad_tensor_to_modulo
|
22 |
+
|
23 |
+
from utils import load_img_to_array, save_array_to_img
|
24 |
+
|
25 |
+
|
26 |
+
@torch.no_grad()
|
27 |
+
def inpaint_img_with_lama(
|
28 |
+
img: np.ndarray,
|
29 |
+
mask: np.ndarray,
|
30 |
+
config_p: str,
|
31 |
+
ckpt_p: str,
|
32 |
+
mod=8,
|
33 |
+
device="cuda"
|
34 |
+
):
|
35 |
+
assert len(mask.shape) == 2
|
36 |
+
if np.max(mask) == 1:
|
37 |
+
mask = mask * 255
|
38 |
+
img = torch.from_numpy(img).float().div(255.)
|
39 |
+
mask = torch.from_numpy(mask).float()
|
40 |
+
predict_config = OmegaConf.load(config_p)
|
41 |
+
predict_config.model.path = ckpt_p
|
42 |
+
# device = torch.device(predict_config.device)
|
43 |
+
device = torch.device(device)
|
44 |
+
|
45 |
+
train_config_path = os.path.join(
|
46 |
+
predict_config.model.path, 'config.yaml')
|
47 |
+
|
48 |
+
with open(train_config_path, 'r') as f:
|
49 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
50 |
+
|
51 |
+
train_config.training_model.predict_only = True
|
52 |
+
train_config.visualizer.kind = 'noop'
|
53 |
+
|
54 |
+
checkpoint_path = os.path.join(
|
55 |
+
predict_config.model.path, 'models',
|
56 |
+
predict_config.model.checkpoint
|
57 |
+
)
|
58 |
+
model = load_checkpoint(
|
59 |
+
train_config, checkpoint_path, strict=False, map_location='cpu')
|
60 |
+
model.freeze()
|
61 |
+
if not predict_config.get('refine', False):
|
62 |
+
model.to(device)
|
63 |
+
|
64 |
+
batch = {}
|
65 |
+
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
|
66 |
+
batch['mask'] = mask[None, None]
|
67 |
+
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
|
68 |
+
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
|
69 |
+
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
|
70 |
+
batch = move_to_device(batch, device)
|
71 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
72 |
+
|
73 |
+
batch = model(batch)
|
74 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
|
75 |
+
cur_res = cur_res.detach().cpu().numpy()
|
76 |
+
|
77 |
+
if unpad_to_size is not None:
|
78 |
+
orig_height, orig_width = unpad_to_size
|
79 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
80 |
+
|
81 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
82 |
+
return cur_res
|
83 |
+
|
84 |
+
|
85 |
+
def build_lama_model(
|
86 |
+
config_p: str,
|
87 |
+
ckpt_p: str,
|
88 |
+
device="cuda"
|
89 |
+
):
|
90 |
+
predict_config = OmegaConf.load(config_p)
|
91 |
+
predict_config.model.path = ckpt_p
|
92 |
+
device = torch.device(device)
|
93 |
+
|
94 |
+
train_config_path = os.path.join(
|
95 |
+
predict_config.model.path, 'config.yaml')
|
96 |
+
|
97 |
+
with open(train_config_path, 'r') as f:
|
98 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
99 |
+
|
100 |
+
train_config.training_model.predict_only = True
|
101 |
+
train_config.visualizer.kind = 'noop'
|
102 |
+
|
103 |
+
checkpoint_path = os.path.join(
|
104 |
+
predict_config.model.path, 'models',
|
105 |
+
predict_config.model.checkpoint
|
106 |
+
)
|
107 |
+
model = load_checkpoint(train_config, checkpoint_path, strict=False)
|
108 |
+
model.to(device)
|
109 |
+
model.freeze()
|
110 |
+
return model
|
111 |
+
|
112 |
+
|
113 |
+
@torch.no_grad()
|
114 |
+
def inpaint_img_with_builded_lama(
|
115 |
+
model,
|
116 |
+
img: np.ndarray,
|
117 |
+
mask: np.ndarray,
|
118 |
+
config_p=None,
|
119 |
+
mod=8,
|
120 |
+
device="cuda"
|
121 |
+
):
|
122 |
+
assert len(mask.shape) == 2
|
123 |
+
if np.max(mask) == 1:
|
124 |
+
mask = mask * 255
|
125 |
+
img = torch.from_numpy(img).float().div(255.)
|
126 |
+
mask = torch.from_numpy(mask).float()
|
127 |
+
|
128 |
+
batch = {}
|
129 |
+
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
|
130 |
+
batch['mask'] = mask[None, None]
|
131 |
+
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
|
132 |
+
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
|
133 |
+
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
|
134 |
+
batch = move_to_device(batch, device)
|
135 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
136 |
+
|
137 |
+
batch = model(batch)
|
138 |
+
cur_res = batch["inpainted"][0].permute(1, 2, 0)
|
139 |
+
cur_res = cur_res.detach().cpu().numpy()
|
140 |
+
|
141 |
+
if unpad_to_size is not None:
|
142 |
+
orig_height, orig_width = unpad_to_size
|
143 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
144 |
+
|
145 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
146 |
+
return cur_res
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
def setup_args(parser):
|
151 |
+
parser.add_argument(
|
152 |
+
"--input_img", type=str, required=True,
|
153 |
+
help="Path to a single input img",
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--input_mask_glob", type=str, required=True,
|
157 |
+
help="Glob to input masks",
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--output_dir", type=str, required=True,
|
161 |
+
help="Output path to the directory with results.",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--lama_config", type=str,
|
165 |
+
default="./lama/configs/prediction/default.yaml",
|
166 |
+
help="The path to the config file of lama model. "
|
167 |
+
"Default: the config of big-lama",
|
168 |
+
)
|
169 |
+
parser.add_argument(
|
170 |
+
"--lama_ckpt", type=str, required=True,
|
171 |
+
help="The path to the lama checkpoint.",
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
"""Example usage:
|
177 |
+
python lama_inpaint.py \
|
178 |
+
--input_img FA_demo/FA1_dog.png \
|
179 |
+
--input_mask_glob "results/FA1_dog/mask*.png" \
|
180 |
+
--output_dir results \
|
181 |
+
--lama_config lama/configs/prediction/default.yaml \
|
182 |
+
--lama_ckpt big-lama
|
183 |
+
"""
|
184 |
+
parser = argparse.ArgumentParser()
|
185 |
+
setup_args(parser)
|
186 |
+
args = parser.parse_args(sys.argv[1:])
|
187 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
188 |
+
|
189 |
+
img_stem = Path(args.input_img).stem
|
190 |
+
mask_ps = sorted(glob.glob(args.input_mask_glob))
|
191 |
+
out_dir = Path(args.output_dir) / img_stem
|
192 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
193 |
+
|
194 |
+
img = load_img_to_array(args.input_img)
|
195 |
+
for mask_p in mask_ps:
|
196 |
+
mask = load_img_to_array(mask_p)
|
197 |
+
img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
|
198 |
+
img_inpainted = inpaint_img_with_lama(
|
199 |
+
img, mask, args.lama_config, args.lama_ckpt, device=device)
|
200 |
+
save_array_to_img(img_inpainted, img_inpainted_p)
|
remove_anything.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
from pathlib import Path
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
|
8 |
+
from sam_segment import predict_masks_with_sam
|
9 |
+
from lama_inpaint import inpaint_img_with_lama
|
10 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
11 |
+
show_mask, show_points, get_clicked_point
|
12 |
+
|
13 |
+
|
14 |
+
def setup_args(parser):
|
15 |
+
parser.add_argument(
|
16 |
+
"--input_img", type=str, required=True,
|
17 |
+
help="Path to a single input img",
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
"--coords_type", type=str, required=True,
|
21 |
+
default="key_in", choices=["click", "key_in"],
|
22 |
+
help="The way to select coords",
|
23 |
+
)
|
24 |
+
parser.add_argument(
|
25 |
+
"--point_coords", type=float, nargs='+', required=True,
|
26 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--point_labels", type=int, nargs='+', required=True,
|
30 |
+
help="The labels of the point prompt, 1 or 0.",
|
31 |
+
)
|
32 |
+
parser.add_argument(
|
33 |
+
"--dilate_kernel_size", type=int, default=None,
|
34 |
+
help="Dilate kernel size. Default: None",
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--output_dir", type=str, required=True,
|
38 |
+
help="Output path to the directory with results.",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--sam_model_type", type=str,
|
42 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b', 'vit_t'],
|
43 |
+
help="The type of sam model to load. Default: 'vit_h"
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--sam_ckpt", type=str, required=True,
|
47 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--lama_config", type=str,
|
51 |
+
default="./lama/configs/prediction/default.yaml",
|
52 |
+
help="The path to the config file of lama model. "
|
53 |
+
"Default: the config of big-lama",
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"--lama_ckpt", type=str, required=True,
|
57 |
+
help="The path to the lama checkpoint.",
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
"""Example usage:
|
63 |
+
python remove_anything.py \
|
64 |
+
--input_img FA_demo/FA1_dog.png \
|
65 |
+
--coords_type key_in \
|
66 |
+
--point_coords 750 500 \
|
67 |
+
--point_labels 1 \
|
68 |
+
--dilate_kernel_size 15 \
|
69 |
+
--output_dir ./results \
|
70 |
+
--sam_model_type "vit_h" \
|
71 |
+
--sam_ckpt sam_vit_h_4b8939.pth \
|
72 |
+
--lama_config lama/configs/prediction/default.yaml \
|
73 |
+
--lama_ckpt big-lama
|
74 |
+
"""
|
75 |
+
parser = argparse.ArgumentParser()
|
76 |
+
setup_args(parser)
|
77 |
+
args = parser.parse_args(sys.argv[1:])
|
78 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
79 |
+
|
80 |
+
if args.coords_type == "click":
|
81 |
+
latest_coords = get_clicked_point(args.input_img)
|
82 |
+
elif args.coords_type == "key_in":
|
83 |
+
latest_coords = args.point_coords
|
84 |
+
img = load_img_to_array(args.input_img)
|
85 |
+
|
86 |
+
masks, _, _ = predict_masks_with_sam(
|
87 |
+
img,
|
88 |
+
[latest_coords],
|
89 |
+
args.point_labels,
|
90 |
+
model_type=args.sam_model_type,
|
91 |
+
ckpt_p=args.sam_ckpt,
|
92 |
+
device=device,
|
93 |
+
)
|
94 |
+
masks = masks.astype(np.uint8) * 255
|
95 |
+
|
96 |
+
# dilate mask to avoid unmasked edge effect
|
97 |
+
if args.dilate_kernel_size is not None:
|
98 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
99 |
+
|
100 |
+
# visualize the segmentation results
|
101 |
+
img_stem = Path(args.input_img).stem
|
102 |
+
out_dir = Path(args.output_dir) / img_stem
|
103 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
104 |
+
for idx, mask in enumerate(masks):
|
105 |
+
# path to the results
|
106 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
107 |
+
img_points_p = out_dir / f"with_points.png"
|
108 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
109 |
+
|
110 |
+
# save the mask
|
111 |
+
save_array_to_img(mask, mask_p)
|
112 |
+
|
113 |
+
# save the pointed and masked image
|
114 |
+
dpi = plt.rcParams['figure.dpi']
|
115 |
+
height, width = img.shape[:2]
|
116 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
117 |
+
plt.imshow(img)
|
118 |
+
plt.axis('off')
|
119 |
+
show_points(plt.gca(), [latest_coords], args.point_labels,
|
120 |
+
size=(width*0.04)**2)
|
121 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
122 |
+
show_mask(plt.gca(), mask, random_color=False)
|
123 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
124 |
+
plt.close()
|
125 |
+
|
126 |
+
# inpaint the masked image
|
127 |
+
for idx, mask in enumerate(masks):
|
128 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
129 |
+
img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
|
130 |
+
img_inpainted = inpaint_img_with_lama(
|
131 |
+
img, mask, args.lama_config, args.lama_ckpt, device=device)
|
132 |
+
save_array_to_img(img_inpainted, img_inpainted_p)
|
replace_anything.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from pathlib import Path
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
from typing import Any, Dict, List
|
9 |
+
from sam_segment import predict_masks_with_sam
|
10 |
+
from stable_diffusion_inpaint import replace_img_with_sd
|
11 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
12 |
+
show_mask, show_points, get_clicked_point
|
13 |
+
|
14 |
+
|
15 |
+
def setup_args(parser):
|
16 |
+
parser.add_argument(
|
17 |
+
"--input_img", type=str, required=True,
|
18 |
+
help="Path to a single input img",
|
19 |
+
)
|
20 |
+
parser.add_argument(
|
21 |
+
"--coords_type", type=str, required=True,
|
22 |
+
default="key_in", choices=["click", "key_in"],
|
23 |
+
help="The way to select coords",
|
24 |
+
)
|
25 |
+
parser.add_argument(
|
26 |
+
"--point_coords", type=float, nargs='+', required=True,
|
27 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--point_labels", type=int, nargs='+', required=True,
|
31 |
+
help="The labels of the point prompt, 1 or 0.",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--text_prompt", type=str, required=True,
|
35 |
+
help="Text prompt",
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"--dilate_kernel_size", type=int, default=None,
|
39 |
+
help="Dilate kernel size. Default: None",
|
40 |
+
)
|
41 |
+
parser.add_argument(
|
42 |
+
"--output_dir", type=str, required=True,
|
43 |
+
help="Output path to the directory with results.",
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--sam_model_type", type=str,
|
47 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b', 'vit_t'],
|
48 |
+
help="The type of sam model to load. Default: 'vit_h"
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--sam_ckpt", type=str, required=True,
|
52 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--seed", type=int,
|
56 |
+
help="Specify seed for reproducibility.",
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--deterministic", action="store_true",
|
60 |
+
help="Use deterministic algorithms for reproducibility.",
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
"""Example usage:
|
67 |
+
python replace_anything.py \
|
68 |
+
--input_img ./example/replace-anything/dog.png \
|
69 |
+
--coords_type key_in \
|
70 |
+
--point_coords 750 500 \
|
71 |
+
--point_labels 1 \
|
72 |
+
--text_prompt "sit on the swing" \
|
73 |
+
--output_dir ./results \
|
74 |
+
--sam_model_type "vit_h" \
|
75 |
+
--sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth
|
76 |
+
"""
|
77 |
+
parser = argparse.ArgumentParser()
|
78 |
+
setup_args(parser)
|
79 |
+
args = parser.parse_args(sys.argv[1:])
|
80 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
81 |
+
|
82 |
+
if args.coords_type == "click":
|
83 |
+
latest_coords = get_clicked_point(args.input_img)
|
84 |
+
elif args.coords_type == "key_in":
|
85 |
+
latest_coords = args.point_coords
|
86 |
+
img = load_img_to_array(args.input_img)
|
87 |
+
|
88 |
+
masks, _, _ = predict_masks_with_sam(
|
89 |
+
img,
|
90 |
+
[latest_coords],
|
91 |
+
args.point_labels,
|
92 |
+
model_type=args.sam_model_type,
|
93 |
+
ckpt_p=args.sam_ckpt,
|
94 |
+
device=device,
|
95 |
+
)
|
96 |
+
masks = masks.astype(np.uint8) * 255
|
97 |
+
|
98 |
+
# dilate mask to avoid unmasked edge effect
|
99 |
+
if args.dilate_kernel_size is not None:
|
100 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
101 |
+
|
102 |
+
# visualize the segmentation results
|
103 |
+
img_stem = Path(args.input_img).stem
|
104 |
+
out_dir = Path(args.output_dir) / img_stem
|
105 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
106 |
+
for idx, mask in enumerate(masks):
|
107 |
+
# path to the results
|
108 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
109 |
+
img_points_p = out_dir / f"with_points.png"
|
110 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
111 |
+
|
112 |
+
# save the mask
|
113 |
+
save_array_to_img(mask, mask_p)
|
114 |
+
|
115 |
+
# save the pointed and masked image
|
116 |
+
dpi = plt.rcParams['figure.dpi']
|
117 |
+
height, width = img.shape[:2]
|
118 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
119 |
+
plt.imshow(img)
|
120 |
+
plt.axis('off')
|
121 |
+
show_points(plt.gca(), [latest_coords], args.point_labels,
|
122 |
+
size=(width*0.04)**2)
|
123 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
124 |
+
show_mask(plt.gca(), mask, random_color=False)
|
125 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
126 |
+
plt.close()
|
127 |
+
|
128 |
+
# fill the masked image
|
129 |
+
for idx, mask in enumerate(masks):
|
130 |
+
if args.seed is not None:
|
131 |
+
torch.manual_seed(args.seed)
|
132 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
133 |
+
img_replaced_p = out_dir / f"replaced_with_{Path(mask_p).name}"
|
134 |
+
img_replaced = replace_img_with_sd(
|
135 |
+
img, mask, args.text_prompt, device=device)
|
136 |
+
save_array_to_img(img_replaced, img_replaced_p)
|
requirements.txt
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
torchaudio
|
6 |
+
segment_anything
|
7 |
+
diffusers
|
8 |
+
transformers
|
9 |
+
accelerate
|
10 |
+
scipy
|
11 |
+
safetensors
|
12 |
+
|
13 |
+
# lama
|
14 |
+
pyyaml
|
15 |
+
tqdm
|
16 |
+
numpy
|
17 |
+
easydict==1.9.0
|
18 |
+
scikit-image==0.17.2
|
19 |
+
scikit-learn==0.24.2
|
20 |
+
opencv-python
|
21 |
+
tensorflow
|
22 |
+
joblib
|
23 |
+
matplotlib
|
24 |
+
pandas
|
25 |
+
albumentations==0.5.2
|
26 |
+
hydra-core==1.1.0
|
27 |
+
pytorch-lightning==1.2.9
|
28 |
+
tabulate
|
29 |
+
kornia==0.5.0
|
30 |
+
webdataset
|
31 |
+
packaging
|
32 |
+
scikit-learn==0.24.2
|
33 |
+
wldhx.yadisk-direct
|
sam_segment.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import argparse
|
3 |
+
import numpy as np
|
4 |
+
from pathlib import Path
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
from typing import Any, Dict, List
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from segment_anything import SamPredictor, sam_model_registry
|
10 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
11 |
+
show_mask, show_points
|
12 |
+
|
13 |
+
|
14 |
+
def predict_masks_with_sam(
|
15 |
+
img: np.ndarray,
|
16 |
+
point_coords: List[List[float]],
|
17 |
+
point_labels: List[int],
|
18 |
+
model_type: str,
|
19 |
+
ckpt_p: str,
|
20 |
+
device="cuda"
|
21 |
+
):
|
22 |
+
point_coords = np.array(point_coords)
|
23 |
+
point_labels = np.array(point_labels)
|
24 |
+
sam = sam_model_registry[model_type](checkpoint=ckpt_p)
|
25 |
+
sam.to(device=device)
|
26 |
+
predictor = SamPredictor(sam)
|
27 |
+
|
28 |
+
predictor.set_image(img)
|
29 |
+
masks, scores, logits = predictor.predict(
|
30 |
+
point_coords=point_coords,
|
31 |
+
point_labels=point_labels,
|
32 |
+
multimask_output=True,
|
33 |
+
)
|
34 |
+
return masks, scores, logits
|
35 |
+
|
36 |
+
|
37 |
+
def build_sam_model(model_type: str, ckpt_p: str, device="cuda"):
|
38 |
+
sam = sam_model_registry[model_type](checkpoint=ckpt_p)
|
39 |
+
sam.to(device=device)
|
40 |
+
predictor = SamPredictor(sam)
|
41 |
+
return predictor
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def setup_args(parser):
|
46 |
+
parser.add_argument(
|
47 |
+
"--input_img", type=str, required=True,
|
48 |
+
help="Path to a single input img",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--point_coords", type=float, nargs='+', required=True,
|
52 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--point_labels", type=int, nargs='+', required=True,
|
56 |
+
help="The labels of the point prompt, 1 or 0.",
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--dilate_kernel_size", type=int, default=None,
|
60 |
+
help="Dilate kernel size. Default: None",
|
61 |
+
)
|
62 |
+
parser.add_argument(
|
63 |
+
"--output_dir", type=str, required=True,
|
64 |
+
help="Output path to the directory with results.",
|
65 |
+
)
|
66 |
+
parser.add_argument(
|
67 |
+
"--sam_model_type", type=str,
|
68 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
69 |
+
help="The type of sam model to load. Default: 'vit_h"
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--sam_ckpt", type=str, required=True,
|
73 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
"""Example usage:
|
79 |
+
python sam_segment.py \
|
80 |
+
--input_img FA_demo/FA1_dog.png \
|
81 |
+
--point_coords 750 500 \
|
82 |
+
--point_labels 1 \
|
83 |
+
--dilate_kernel_size 15 \
|
84 |
+
--output_dir ./results \
|
85 |
+
--sam_model_type "vit_h" \
|
86 |
+
--sam_ckpt sam_vit_h_4b8939.pth
|
87 |
+
"""
|
88 |
+
parser = argparse.ArgumentParser()
|
89 |
+
setup_args(parser)
|
90 |
+
args = parser.parse_args(sys.argv[1:])
|
91 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
92 |
+
|
93 |
+
img = load_img_to_array(args.input_img)
|
94 |
+
|
95 |
+
masks, _, _ = predict_masks_with_sam(
|
96 |
+
img,
|
97 |
+
[args.point_coords],
|
98 |
+
args.point_labels,
|
99 |
+
model_type=args.sam_model_type,
|
100 |
+
ckpt_p=args.sam_ckpt,
|
101 |
+
device=device,
|
102 |
+
)
|
103 |
+
masks = masks.astype(np.uint8) * 255
|
104 |
+
|
105 |
+
# dilate mask to avoid unmasked edge effect
|
106 |
+
if args.dilate_kernel_size is not None:
|
107 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
108 |
+
|
109 |
+
# visualize the segmentation results
|
110 |
+
img_stem = Path(args.input_img).stem
|
111 |
+
out_dir = Path(args.output_dir) / img_stem
|
112 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
113 |
+
for idx, mask in enumerate(masks):
|
114 |
+
# path to the results
|
115 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
116 |
+
img_points_p = out_dir / f"with_points.png"
|
117 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
118 |
+
|
119 |
+
# save the mask
|
120 |
+
save_array_to_img(mask, mask_p)
|
121 |
+
|
122 |
+
# save the pointed and masked image
|
123 |
+
dpi = plt.rcParams['figure.dpi']
|
124 |
+
height, width = img.shape[:2]
|
125 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
126 |
+
plt.imshow(img)
|
127 |
+
plt.axis('off')
|
128 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
129 |
+
size=(width*0.04)**2)
|
130 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
131 |
+
show_mask(plt.gca(), mask, random_color=False)
|
132 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
133 |
+
plt.close()
|
stable_diffusion_inpaint.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import glob
|
4 |
+
import argparse
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image as Image
|
8 |
+
from pathlib import Path
|
9 |
+
from diffusers import StableDiffusionInpaintPipeline
|
10 |
+
from utils.mask_processing import crop_for_filling_pre, crop_for_filling_post
|
11 |
+
from utils.crop_for_replacing import recover_size, resize_and_pad
|
12 |
+
from utils import load_img_to_array, save_array_to_img
|
13 |
+
|
14 |
+
|
15 |
+
def fill_img_with_sd(
|
16 |
+
img: np.ndarray, mask: np.ndarray, text_prompt: str, device="cuda"
|
17 |
+
):
|
18 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
19 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
20 |
+
torch_dtype=torch.float32,
|
21 |
+
).to(device)
|
22 |
+
img_crop, mask_crop = crop_for_filling_pre(img, mask)
|
23 |
+
img_crop_filled = pipe(
|
24 |
+
prompt=text_prompt,
|
25 |
+
image=Image.fromarray(img_crop),
|
26 |
+
mask_image=Image.fromarray(mask_crop),
|
27 |
+
).images[0]
|
28 |
+
img_filled = crop_for_filling_post(img, mask, np.array(img_crop_filled))
|
29 |
+
return img_filled
|
30 |
+
|
31 |
+
|
32 |
+
def replace_img_with_sd(
|
33 |
+
img: np.ndarray, mask: np.ndarray, text_prompt: str, step: int = 50, device="cuda"
|
34 |
+
):
|
35 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
36 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
37 |
+
torch_dtype=torch.float32,
|
38 |
+
).to(device)
|
39 |
+
img_padded, mask_padded, padding_factors = resize_and_pad(img, mask)
|
40 |
+
img_padded = pipe(
|
41 |
+
prompt=text_prompt,
|
42 |
+
image=Image.fromarray(img_padded),
|
43 |
+
mask_image=Image.fromarray(255 - mask_padded),
|
44 |
+
num_inference_steps=step,
|
45 |
+
).images[0]
|
46 |
+
height, width, _ = img.shape
|
47 |
+
img_resized, mask_resized = recover_size(
|
48 |
+
np.array(img_padded), mask_padded, (height, width), padding_factors
|
49 |
+
)
|
50 |
+
mask_resized = np.expand_dims(mask_resized, -1) / 255
|
51 |
+
img_resized = img_resized * (1 - mask_resized) + img * mask_resized
|
52 |
+
return img_resized
|
53 |
+
|
54 |
+
|
55 |
+
def setup_args(parser):
|
56 |
+
parser.add_argument(
|
57 |
+
"--input_img",
|
58 |
+
type=str,
|
59 |
+
required=True,
|
60 |
+
help="Path to a single input img",
|
61 |
+
)
|
62 |
+
parser.add_argument(
|
63 |
+
"--text_prompt",
|
64 |
+
type=str,
|
65 |
+
required=True,
|
66 |
+
help="Text prompt",
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--input_mask_glob",
|
70 |
+
type=str,
|
71 |
+
required=True,
|
72 |
+
help="Glob to input masks",
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--output_dir",
|
76 |
+
type=str,
|
77 |
+
required=True,
|
78 |
+
help="Output path to the directory with results.",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"--seed",
|
82 |
+
type=int,
|
83 |
+
help="Specify seed for reproducibility.",
|
84 |
+
)
|
85 |
+
parser.add_argument(
|
86 |
+
"--deterministic",
|
87 |
+
action="store_true",
|
88 |
+
help="Use deterministic algorithms for reproducibility.",
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
"""Example usage:
|
94 |
+
python lama_inpaint.py \
|
95 |
+
--input_img FA_demo/FA1_dog.png \
|
96 |
+
--input_mask_glob "results/FA1_dog/mask*.png" \
|
97 |
+
--text_prompt "a teddy bear on a bench" \
|
98 |
+
--output_dir results
|
99 |
+
"""
|
100 |
+
parser = argparse.ArgumentParser()
|
101 |
+
setup_args(parser)
|
102 |
+
args = parser.parse_args(sys.argv[1:])
|
103 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
104 |
+
|
105 |
+
if args.deterministic:
|
106 |
+
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
107 |
+
torch.use_deterministic_algorithms(True)
|
108 |
+
|
109 |
+
img_stem = Path(args.input_img).stem
|
110 |
+
mask_ps = sorted(glob.glob(args.input_mask_glob))
|
111 |
+
out_dir = Path(args.output_dir) / img_stem
|
112 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
113 |
+
|
114 |
+
img = load_img_to_array(args.input_img)
|
115 |
+
for mask_p in mask_ps:
|
116 |
+
if args.seed is not None:
|
117 |
+
torch.manual_seed(args.seed)
|
118 |
+
mask = load_img_to_array(mask_p)
|
119 |
+
img_filled_p = out_dir / f"filled_with_{Path(mask_p).name}"
|
120 |
+
img_filled = fill_img_with_sd(img, mask, args.text_prompt, device=device)
|
121 |
+
save_array_to_img(img_filled, img_filled_p)
|