import torch from kornia.constants import SamplePadding from kornia.augmentation import RandomAffine, CenterCrop class FakeFakesGenerator: def __init__(self, aug_proba=0.5, img_aug_degree=30, img_aug_translate=0.2): self.grad_aug = RandomAffine(degrees=360, translate=0.2, padding_mode=SamplePadding.REFLECTION, keepdim=False, p=1) self.img_aug = RandomAffine(degrees=img_aug_degree, translate=img_aug_translate, padding_mode=SamplePadding.REFLECTION, keepdim=True, p=1) self.aug_proba = aug_proba def __call__(self, input_images, masks): blend_masks = self._fill_masks_with_gradient(masks) blend_target = self._make_blend_target(input_images) result = input_images * (1 - blend_masks) + blend_target * blend_masks return result, blend_masks def _make_blend_target(self, input_images): batch_size = input_images.shape[0] permuted = input_images[torch.randperm(batch_size)] augmented = self.img_aug(input_images) is_aug = (torch.rand(batch_size, device=input_images.device)[:, None, None, None] < self.aug_proba).float() result = augmented * is_aug + permuted * (1 - is_aug) return result def _fill_masks_with_gradient(self, masks): batch_size, _, height, width = masks.shape grad = torch.linspace(0, 1, steps=width * 2, device=masks.device, dtype=masks.dtype) \ .view(1, 1, 1, -1).expand(batch_size, 1, height * 2, width * 2) grad = self.grad_aug(grad) grad = CenterCrop((height, width))(grad) grad *= masks grad_for_min = grad + (1 - masks) * 10 grad -= grad_for_min.view(batch_size, -1).min(-1).values[:, None, None, None] grad /= grad.view(batch_size, -1).max(-1).values[:, None, None, None] + 1e-6 grad.clamp_(min=0, max=1) return grad