#!/usr/bin/env python3 # Example command: # ./bin/predict.py \ # model.path= \ # indir= \ # outdir= import logging import os import sys import traceback from saicinpainting.evaluation.utils import move_to_device from saicinpainting.evaluation.refinement import refine_predict os.environ['OMP_NUM_THREADS'] = '1' os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' os.environ['VECLIB_MAXIMUM_THREADS'] = '1' os.environ['NUMEXPR_NUM_THREADS'] = '1' import cv2 import hydra import numpy as np import torch import tqdm import yaml from omegaconf import OmegaConf from torch.utils.data._utils.collate import default_collate from saicinpainting.training.data.datasets import make_default_val_dataset from saicinpainting.training.trainers import load_checkpoint from saicinpainting.utils import register_debug_signal_handlers LOGGER = logging.getLogger(__name__) @hydra.main(config_path='../configs/prediction', config_name='default.yaml') def main(predict_config: OmegaConf): try: if sys.platform != 'win32': register_debug_signal_handlers() # kill -10 will result in traceback dumped into log device = torch.device("cpu") train_config_path = os.path.join(predict_config.model.path, 'config.yaml') with open(train_config_path, 'r') as f: train_config = OmegaConf.create(yaml.safe_load(f)) train_config.training_model.predict_only = True train_config.visualizer.kind = 'noop' out_ext = predict_config.get('out_ext', '.png') checkpoint_path = os.path.join(predict_config.model.path, 'models', predict_config.model.checkpoint) model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') model.freeze() if not predict_config.get('refine', False): model.to(device) if not predict_config.indir.endswith('/'): predict_config.indir += '/' dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) for img_i in tqdm.trange(len(dataset)): mask_fname = dataset.mask_filenames[img_i] cur_out_fname = os.path.join( predict_config.outdir, os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext ) os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) batch = default_collate([dataset[img_i]]) if predict_config.get('refine', False): assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" # image unpadding is taken care of in the refiner, so that output image # is same size as the input image cur_res = refine_predict(batch, model, **predict_config.refiner) cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy() else: with torch.no_grad(): batch = move_to_device(batch, device) batch['mask'] = (batch['mask'] > 0) * 1 batch = model(batch) cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() unpad_to_size = batch.get('unpad_to_size', None) if unpad_to_size is not None: orig_height, orig_width = unpad_to_size cur_res = cur_res[:orig_height, :orig_width] cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) cv2.imwrite(cur_out_fname, cur_res) except KeyboardInterrupt: LOGGER.warning('Interrupted by user') except Exception as ex: LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') sys.exit(1) if __name__ == '__main__': main()