#!/usr/bin/env python3 # Example command: # ./bin/predict.py \ # model.path= \ # indir= \ # outdir= import logging import os import sys import traceback from saicinpainting.evaluation.utils import move_to_device os.environ['OMP_NUM_THREADS'] = '1' os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' os.environ['VECLIB_MAXIMUM_THREADS'] = '1' os.environ['NUMEXPR_NUM_THREADS'] = '1' import cv2 import hydra import numpy as np import torch import tqdm import yaml from omegaconf import OmegaConf from torch.utils.data._utils.collate import default_collate from saicinpainting.training.data.datasets import make_default_val_dataset from saicinpainting.training.trainers import load_checkpoint, DefaultInpaintingTrainingModule from saicinpainting.utils import register_debug_signal_handlers, get_shape LOGGER = logging.getLogger(__name__) @hydra.main(config_path='../configs/prediction', config_name='default_inner_features.yaml') def main(predict_config: OmegaConf): try: if sys.platform != 'win32': register_debug_signal_handlers() # kill -10 will result in traceback dumped into log device = torch.device(predict_config.device) train_config_path = os.path.join(predict_config.model.path, 'config.yaml') with open(train_config_path, 'r') as f: train_config = OmegaConf.create(yaml.safe_load(f)) checkpoint_path = os.path.join(predict_config.model.path, 'models', predict_config.model.checkpoint) model = load_checkpoint(train_config, checkpoint_path, strict=False) model.freeze() model.to(device) assert isinstance(model, DefaultInpaintingTrainingModule), 'Only DefaultInpaintingTrainingModule is supported' assert isinstance(getattr(model.generator, 'model', None), torch.nn.Sequential) if not predict_config.indir.endswith('/'): predict_config.indir += '/' dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) max_level = max(predict_config.levels) with torch.no_grad(): for img_i in tqdm.trange(len(dataset)): mask_fname = dataset.mask_filenames[img_i] cur_out_fname = os.path.join(predict_config.outdir, os.path.splitext(mask_fname[len(predict_config.indir):])[0]) os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) batch = move_to_device(default_collate([dataset[img_i]]), device) img = batch['image'] mask = batch['mask'] mask[:] = 0 mask_h, mask_w = mask.shape[-2:] mask[:, :, mask_h // 2 - predict_config.hole_radius : mask_h // 2 + predict_config.hole_radius, mask_w // 2 - predict_config.hole_radius : mask_w // 2 + predict_config.hole_radius] = 1 masked_img = torch.cat([img * (1 - mask), mask], dim=1) feats = masked_img for level_i, level in enumerate(model.generator.model): feats = level(feats) if level_i in predict_config.levels: cur_feats = torch.cat([f for f in feats if torch.is_tensor(f)], dim=1) \ if isinstance(feats, tuple) else feats if predict_config.slice_channels: cur_feats = cur_feats[:, slice(*predict_config.slice_channels)] cur_feat = cur_feats.pow(2).mean(1).pow(0.5).clone() cur_feat -= cur_feat.min() cur_feat /= cur_feat.std() cur_feat = cur_feat.clamp(0, 1) / 1 cur_feat = cur_feat.cpu().numpy()[0] cur_feat *= 255 cur_feat = np.clip(cur_feat, 0, 255).astype('uint8') cv2.imwrite(cur_out_fname + f'_lev{level_i:02d}_norm.png', cur_feat) # for channel_i in predict_config.channels: # # cur_feat = cur_feats[0, channel_i].clone().detach().cpu().numpy() # cur_feat -= cur_feat.min() # cur_feat /= cur_feat.max() # cur_feat *= 255 # cur_feat = np.clip(cur_feat, 0, 255).astype('uint8') # cv2.imwrite(cur_out_fname + f'_lev{level_i}_ch{channel_i}.png', cur_feat) elif level_i >= max_level: break except KeyboardInterrupt: LOGGER.warning('Interrupted by user') except Exception as ex: LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') sys.exit(1) if __name__ == '__main__': main()