Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import functools | |
import os | |
import pathlib | |
import shlex | |
import subprocess | |
import sys | |
import tarfile | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import torch | |
if os.getenv("SYSTEM") == "spaces": | |
with open("patch") as f: | |
subprocess.run(shlex.split("patch -p1"), cwd="gan-control", stdin=f) | |
sys.path.insert(0, "gan-control/src") | |
from gan_control.inference.controller import Controller | |
TITLE = "GAN-Control" | |
DESCRIPTION = "https://github.com/amazon-research/gan-control" | |
def download_models() -> None: | |
model_dir = pathlib.Path("controller_age015id025exp02hai04ori02gam15") | |
if not model_dir.exists(): | |
path = huggingface_hub.hf_hub_download( | |
"public-data/gan-control", "controller_age015id025exp02hai04ori02gam15.tar.gz" | |
) | |
with tarfile.open(path) as f: | |
f.extractall() | |
def run( | |
seed: int, | |
truncation: float, | |
yaw: int, | |
pitch: int, | |
age: int, | |
hair_color_r: float, | |
hair_color_g: float, | |
hair_color_b: float, | |
nrows: int, | |
ncols: int, | |
controller: Controller, | |
device: torch.device, | |
) -> PIL.Image.Image: | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
batch_size = nrows * ncols | |
latent_size = controller.config.model_config["latent_size"] | |
latent = torch.from_numpy(np.random.RandomState(seed).randn(batch_size, latent_size)).float().to(device) | |
initial_image_tensors, initial_latent_z, initial_latent_w = controller.gen_batch( | |
latent=latent, truncation=truncation | |
) | |
res0 = controller.make_resized_grid_image(initial_image_tensors, nrow=ncols) | |
pose_control = torch.tensor([[yaw, pitch, 0]], dtype=torch.float32) | |
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
latent=initial_latent_w, input_is_latent=True, orientation=pose_control | |
) | |
res1 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
age_control = torch.tensor([[age]], dtype=torch.float32) | |
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
latent=initial_latent_w, input_is_latent=True, age=age_control | |
) | |
res2 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
hair_color = torch.tensor([[hair_color_r, hair_color_g, hair_color_b]], dtype=torch.float32) / 255 | |
hair_color = torch.clamp(hair_color, 0, 1) | |
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
latent=initial_latent_w, input_is_latent=True, hair=hair_color | |
) | |
res3 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
return res0, res1, res2, res3 | |
download_models() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
path = "controller_age015id025exp02hai04ori02gam15/" | |
controller = Controller(path, device) | |
fn = functools.partial(run, controller=controller, device=device) | |
demo = gr.Interface( | |
fn=fn, | |
inputs=[ | |
gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=0), | |
gr.Slider(label="Truncation", minimum=0, maximum=1, step=0.1, value=0.7), | |
gr.Slider(label="Yaw", minimum=-90, maximum=90, step=1, value=30), | |
gr.Slider(label="Pitch", minimum=-90, maximum=90, step=1, value=0), | |
gr.Slider(label="Age", minimum=15, maximum=75, step=1, value=75), | |
gr.Slider(label="Hair Color (R)", minimum=0, maximum=255, step=1, value=186), | |
gr.Slider(label="Hair Color (G)", minimum=0, maximum=255, step=1, value=158), | |
gr.Slider(label="Hair Color (B)", minimum=0, maximum=255, step=1, value=92), | |
gr.Slider(label="Number of Rows", minimum=1, maximum=3, step=1, value=1), | |
gr.Slider(label="Number of Columns", minimum=1, maximum=5, step=1, value=5), | |
], | |
outputs=[ | |
gr.Image(label="Generated Image"), | |
gr.Image(label="Head Pose Controlled"), | |
gr.Image(label="Age Controlled"), | |
gr.Image(label="Hair Color Controlled"), | |
], | |
title=TITLE, | |
description=DESCRIPTION, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch() | |