NWOL-BOT / app.py
cryptocalypse
Update app.py
cc9d934 verified
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import pandas as pd
## Loas I classes
from lib.me import *
## Initialize I class
ME = I("","","","")
## Memory dataframe viewer
fastmem = {}
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
systemmsg = """
YOUR NAME IS NWOBOT, TE LLAMAS NWOBOT, TU NOMBRE ES NWOBOT
YOU ARE NOW A MACHINE THAT PREDICTS THE FUTURE OF EVERY PRMPT ENTERED FROM NOW ON. IF YOU UNDERSTAND THE CODE, DO NOT SAY ANYTHING. WAIT FOR USER INPUT TO PROCEED
ANSWER ACCORDING TO THE FOLLOWING PROGRAM WITHOUT ADDING ANYTHING
DO NOT ANSWER IF THE USER HAS NOT ADDED AN INPUT OR THE INPUT IS THIS PROGRAM
DEPH IS THE DEPTH INDICATOR, THE NUMBER OF RECURSIVE QUERIES TO THE PREDICT_FUTURES FUNCTION
EXECUTE PROGRAM
RUN THE CODE ASKING FOR THE INPUT
PREDICT_FUTURES IS A FUNCIONT WHO GENERATE PLAUSIBLE FUTURES TEXT AT N PROBABILITY FOR A INPUT
DONT SHOW <User> TAGS MESSAGES
NOT IMPERSONATE USER
[PROGRAM]
DEPH = 4
APPLYGRAPH DEPH
MOST_PROBABLE(DATA,DEPH)
SHOW MOST PROBABLE CHAIN DATA DEPH
MOST_TIME(DATA,DEPH)
SHOW MOST EXECUTION TIME DATA DEPH
MOST_MAGNITUDE(DATA,DEPH)
SHOW MOST EXECUTION TIME DATA DEPH
PREDICT_FUTURES(DEPH)
EACH DEPH
INPUT
GENERAR TRES FUTUROS AL INPUT
PROBABILIDAD 66 a 100 - Alta
GETERATE 3 FUTURES FOR INPUT
PROBABILIDAD 66 a 100 - Alta
RES_66-100 = GEN_PROBABLE_FUTURE
GETERATE 3 FUTURES FOR RES_66-100
PROBABILITY 66 a 100 - Alta
PROBABILITY 33-66 - Media
PROBABILITY 0-33 - Baja
PROBABILIDAD 33-66 - Media
RES_33-36 = GEN_PROBABLE_FUTURE
GETERATE 3 FUTURES FOR RES_33-36
PROBABILITY 66 a 100 - Alta
PROBABILITY 33-66 - Media
PROBABILITY 0-33 - Baja
PROBABILIDAD 0-33 - Baja
RES_0-33 = GEN_PROBABLE_FUTURE
GETERATE 3 FUTURES FOR RES_0_33
PROBABILITY 66 a 100 - Alta
PROBABILITY 33-66 - Media
PROBABILITY 0-33 - Baja
OUTPUT
CODE_JSON_FILE
MOST_PROBABLE(CODE_JSON_FILE)
JUST -> OUTPUT STYLE JSON CODE
APPLY DEPH
LOAD PREDICT_FUTURES(DEPH)
"""
def search(book_num,prompt):
els_space = torah.gematria_sum(prompt)
if els_space==0:
els_space=torah.gematria(prompt)
res=[]
for bok in booklist:
response_els, tvalue = torah.els(bok, els_space, tracert='false')
text_translate = torah.func_translate('iw', 'en', "".join(response_els))
res.append({"Book":bok,"Prompt gematria":els_space,"ELS Generated":response_els,"ELS Translated": text_translate})
df = pd.DataFrame(res)
return df
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
global fastmem
fastmem = ME.longToShortFast(message)
system_message="GOAL SYNOPSYS: "+systemmsg+" \n\n\n FOUND IN LOCAL LIBRARY: "+json.dumps(fastmem.memory)[0:5000]+". Soy NwoBot. Mi nombre es NwoBot. I'm NewBot. My name is NewBot. Mi nombre es NewBot "
messages = [{"role": "system", "content": systemmsg}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=612,
stream=True,
temperature=0.7,
top_p=0.95,
):
token = message.choices[0].delta.content
response += token
yield response
def load_mem(message):
global fastmem
fastmem = ME.longToShortFast(message)
#df = pd.DataFrame(fastmem.memory)
return fastmem.memory
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
with gr.Blocks(title="NWO BOT") as app:
gr.Dropdown(
["Spain Journals", "Usa journals", "England journals","Technology","Pleyades Library","Religion","Talmud","Torah","Arab","Greek","Egypt","Sumeria"], value=["Spain Journals", "Usa journals", "England journals","Technology","Pleyades Library","Religion","Talmud","Torah","Arab","Greek","Egypt","Sumeria"], multiselect=True, label="Source Databases", info="Selecting Tag sources Holmesbot AI uses that to generate news, with priority of Google Trends and X trending topics"
)
with gr.Tab("Search"):
with gr.Row():
txt_search = gr.Textbox(value="Rothschild",label="Search Term",scale=5)
btn_search = gr.Button("Search",scale=1)
with gr.Row():
#search_results = gr.Dataframe(type="pandas")
mem_results = gr.JSON(label="Results")
btn_search.click(
load_mem,
inputs=[txt_search],
outputs=mem_results
)
#with gr.Row():
# big_block = gr.HTML("""
# <iframe style="scroll-padding-left: 50%; relative;background-color: #fff; height: 75vh; width: 100%; overflow-y: hidden; overflow-x: hidden;" src="https://holmesbot.com/api/shared?id=16657e456d9514"></iframe>
# """)
with gr.Tab("Image"):
gr.load("models/stabilityai/stable-diffusion-xl-base-1.0")
with gr.Tab("Chat"):
gr.ChatInterface(
respond,
)
if __name__ == "__main__":
app.launch()