NadiaHassan commited on
Commit
9425467
1 Parent(s): 60bd2b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -5
app.py CHANGED
@@ -1,19 +1,15 @@
1
  from transformers import GPT2LMHeadModel,GPT2Tokenizer
2
  import gradio as grad
3
-
4
  mdl = GPT2LMHeadModel.from_pretrained('gpt2')
5
  gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
6
-
7
-
8
  def generate(starting_text):
9
  tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
10
- gpt2_tensors = mdl.generate(tkn_ids)
11
  response=""
12
  #response = gpt2_tensors
13
  for i, x in enumerate(gpt2_tensors):
14
  response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}"
15
  return response
16
-
17
  txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
18
  out=grad.Textbox(lines=1, label="Generated Tensors")
19
  grad.Interface(generate, inputs=txt, outputs=out).launch()
 
1
  from transformers import GPT2LMHeadModel,GPT2Tokenizer
2
  import gradio as grad
 
3
  mdl = GPT2LMHeadModel.from_pretrained('gpt2')
4
  gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
 
 
5
  def generate(starting_text):
6
  tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
7
+ gpt2_tensors = mdl.generate(tkn_ids,max_length=100,no_repeat_ngram_size=True)
8
  response=""
9
  #response = gpt2_tensors
10
  for i, x in enumerate(gpt2_tensors):
11
  response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}"
12
  return response
 
13
  txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
14
  out=grad.Textbox(lines=1, label="Generated Tensors")
15
  grad.Interface(generate, inputs=txt, outputs=out).launch()