Text-to-Voice / app.py
Nag189's picture
Update app.py
a091496
raw
history blame
3.45 kB
import streamlit as st
import time
from datetime import datetime
from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan,SpeechT5ForTextToSpeech
import numpy as np
import torch
from io import StringIO
import soundfile as sf
html_temp= """
<div style="background-color:tomato;padding:10px">
<h2 style="color:white;text-align:centre;"> Text-to-Speech </h2>
</div>
"""
st.markdown(html_temp,unsafe_allow_html=True)
st.markdown(
"""
Text to Audio Conversion.
"""
)
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
speaker_embeddings = np.load("cmu_us_slt_arctic-wav-arctic_a0508.npy")
speaker_embeddings = torch.tensor(speaker_embeddings).unsqueeze(0)
text = st.text_area("Type your text..")
st.button("Convert")
inputs = processor(text=text, return_tensors="pt")
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
with torch.no_grad():
speech = vocoder(spectrogram)
sf.write("speech.wav", speech.numpy(), samplerate=16000)
audio_file = open('speech.wav', 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')
uploaded_file=st.file_uploader("Upload your text file here",type=['txt'] )
if uploaded_file is not None:
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
#To read file as string:
text = stringio.read()
st.write(text)
st.button("Convert",key=1)
inputs = processor(text=text, return_tensors="pt")
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
with torch.no_grad():
speech = vocoder(spectrogram)
sf.write("speech.wav", speech.numpy(), samplerate=16000)
audio_file = open('speech.wav', 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')
## footer
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
def image(src_as_string, **style):
return img(src=src_as_string, style=styles(**style))
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def layout(*args):
style = """
<style>
# MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stApp { bottom: 105px; }
</style>
"""
style_div = styles(
position="fixed",
left=0,
bottom=0,
margin=px(0, 0, 0, 0),
width=percent(100),
color="black",
text_align="center",
height="auto",
opacity=1
)
style_hr = styles(
display="block",
margin=px(8, 8, "auto", "auto"),
border_style="solid",
border_width=px(0.5)
)
body = p()
foot = div(
style=style_div
)(
hr(
style=style_hr
),
body
)
st.markdown(style,unsafe_allow_html=True)
for arg in args:
if isinstance(arg, str):
body(arg)
elif isinstance(arg, HtmlElement):
body(arg)
st.markdown(str(foot), unsafe_allow_html=True)
def footer():
myargs = [
"©️ Apps Consultants",
]
layout(*myargs)
if __name__ == "__main__":
footer()