Text-to-Voice / app.py
Nag189's picture
Update wav type
7ce66ad
raw
history blame
3.33 kB
import streamlit as st
import numpy as np
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from io import StringIO
import soundfile as sf
# Load models outside of function calls for efficiency
@st.cache_data
def load_models():
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
return model, processor, vocoder
model, processor, vocoder = load_models()
# Load speaker embeddings
@st.cache_data
def get_speaker_embeddings():
speaker_embeddings = np.load("cmu_us_clb_arctic-wav-arctic_a0144.npy")
return torch.tensor(speaker_embeddings).unsqueeze(0)
speaker_embeddings = get_speaker_embeddings()
# Improved Styling
def local_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
local_css("style.css")
# Streamlined Layout
st.title("Text-to-Voice Conversion")
st.markdown("Convert your text to speech using advanced AI models.")
# Function to convert text to speech
def text_to_speech(text):
try:
# Segment the text if it's too long
max_length = 100 # Set a max length as per model's capability
segments = [text[i:i+max_length] for i in range(0, len(text), max_length)]
audio_paths = []
for segment in segments:
inputs = processor(text=segment, return_tensors="pt")
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
with torch.no_grad():
speech = vocoder(spectrogram)
audio_path = f"speech_segment_{len(audio_paths)}.wav"
sf.write(audio_path, speech.numpy(), samplerate=16000)
audio_paths.append(audio_path)
return audio_paths
except Exception as e:
st.error(f"Error in text-to-speech conversion: {e}")
return []
# Function to combine audio segments
def combine_audio_segments(paths):
combined_speech = []
for path in paths:
data, samplerate = sf.read(path)
combined_speech.extend(data)
sf.write("combined_speech.wav", np.array(combined_speech), samplerate)
return "combined_speech.wav"
# Text Input
text = st.text_area("Type your text or upload a text file below.")
# Convert Button
if st.button("Convert"):
if text:
audio_paths = text_to_speech(text)
combined_audio_path = combine_audio_segments(audio_paths)
audio_file = open(combined_audio_path, 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')
else:
st.error("Please enter some text to convert.")
# File Uploader
uploaded_file = st.file_uploader("Upload your text file here", type=['txt'])
if uploaded_file is not None:
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
text = stringio.read()
st.write(text)
if st.button("Convert Uploaded File", key=1):
audio_paths = text_to_speech(text)
combined_audio_path = combine_audio_segments(audio_paths)
audio_file = open(combined_audio_path, 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes, format='audio/wav')