Spaces:
Runtime error
Runtime error
File size: 1,179 Bytes
3d7c786 d0e28a6 3d7c786 44cb802 a98aff0 3d7c786 44cb802 d0e28a6 3d7c786 44cb802 3d7c786 47a68c5 44cb802 d0e28a6 5cf785f d0e28a6 0cec39d 44cb802 0cec39d 44cb802 d0e28a6 3d7c786 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st #Web App
from main import classify
demo_phrases = """ Here are some examples:
this is a phrase
is it neutral
nothing else to say
man I'm so damn angry
sarcasm lol
I love this product
"""
#title
st.title("Sentiment Analysis")
#subtitle
st.markdown("## A selection of popular sentiment analysis models - hosted on 🤗 Spaces")
model_name = st.selectbox(
'Select a pre-trained model',
[
'finiteautomata/bertweet-base-sentiment-analysis',
'ahmedrachid/FinancialBERT-Sentiment-Analysis',
'finiteautomata/beto-sentiment-analysis'
],
)
input_sentences = st.text_area("Sentences", value=demo_phrases, height=200)
data = input_sentences.split('\n')
if st.button("Classify"):
st.write("Please allow a few minutes for the model to run/download")
for i in range(len(data)):
j = classify(model_name.strip(), data[i])[0]
sentiment = j['label']
confidence = j['score']
st.write(f"{i}. {data[i]} :: Classification - {sentiment} with confidence {confidence}")
st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")
|