import streamlit as st #Web App from main import classify demo_phrases = """ Here are some examples: this is a phrase is it neutral nothing else to say man I'm so damn angry sarcasm lol I love this product """ #title st.title("Sentiment Analysis") #subtitle st.markdown("## A selection of popular sentiment analysis models - hosted on 🤗 Spaces") model_name = st.selectbox( 'Select a pre-trained model', [ 'finiteautomata/bertweet-base-sentiment-analysis', 'ahmedrachid/FinancialBERT-Sentiment-Analysis', 'finiteautomata/beto-sentiment-analysis' ], ) input_sentences = st.text_area("Sentences", value=demo_phrases, height=200) data = input_sentences.split('\n') if st.button("Classify"): st.write("Please allow a few minutes for the model to run/download") for i in range(len(data)): j = classify(model_name.strip(), data[i])[0] sentiment = j['label'] confidence = j['score'] st.write(f"{i}. {data[i]} :: Classification - {sentiment} with confidence {confidence}") st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")