import streamlit as st #Web App from main import classify #title st.title("Easy OCR - Extract Text from Images") #subtitle st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces") model_name = st.selectbox( 'Select a pre-trained model', [ 'finiteautomata/bertweet-base-sentiment-analysis', 'ahmedrachid/FinancialBERT-Sentiment-Analysis', 'finiteautomata/beto-sentiment-analysis' ], ) input_sentences = st.text_area("Sentences", value="", height=200) data = input_sentences.split('\n') if st.button("Classify"): for i in data: st.write(i) j = classify(model_name.strip(), i)[0] sentiment = j['label'] confidence = j['score'] st.write(f"{i} :: Classification - {sentiment} with confidence {confidence}") st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")