import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") max_history = 10 # Maximum number of previous chat turns to include in the conversation history chat_history_ids = None def chatbot(user_input): global chat_history_ids # encode the new user input, add the eos_token and return a tensor in PyTorch new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids # generate a response while limiting the total chat history to max_history tokens chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # decode and return the generated response response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) return response styles = { "textarea": "height: 200px; font-size: 18px;", "label": "font-size: 20px; font-weight: bold;", "output": "color: red; font-size: 18px;" } iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Osana Chat Friend", styles=styles) iface.launch()