import openai from googleapiclient.discovery import build import requests import json import wikipedia import requests from bs4 import BeautifulSoup import gradio as gr # Set up the OpenAI API client openai.api_key = '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' # Replace with your actual API key # Set up your YouTube Data API credentials youtube_api_key = 'AIzaSyDYzXAkPqU6ODnGX9rEEcvL64xh29_LRVs' # Replace with your actual YouTube API key # Set up Google SERP API credentials serp_api_key = '03c74289238ba82d2889379e7a958a07b56c45de' # Replace with your actual Google SERP API key # Function to send a message and receive a response from the chatbot def chat(message): try: response = openai.Completion.create( engine='text-davinci-003', # Choose the language model/engine you want to use prompt=message, max_tokens=50, # Adjust the response length as needed n=1, # Number of responses to generate stop=None, # Specify a stop token to end the response ) return response.choices[0].text.strip() except Exception as e: print("An error occurred:", e) return "" # Function to search for YouTube videos def search_videos(query, max_results=5): # Build the YouTube API client youtube = build('youtube', 'v3', developerKey=youtube_api_key) # Make a search request to retrieve video results search_response = youtube.search().list( q=query, part='id', maxResults=max_results, type='video' ).execute() # Extract the video links from the search response video_links = [] for item in search_response['items']: video_id = item['id']['videoId'] video_link = f'https://www.youtube.com/watch?v={video_id}' video_links.append(video_link) return video_links # Function to get the latest answers from Google SERP API def get_latest_answers(query): url = "https://google.serper.dev/search" payload = json.dumps({ "q": query }) headers = { 'X-API-KEY': serp_api_key, 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) try: # Parse the response JSON data = json.loads(response.text) # Extract details from the response output = "" if 'knowledgeGraph' in data: knowledge_graph = data['knowledgeGraph'] output += "Website: {}\n".format(knowledge_graph.get('website')) output += "Description: {}\n".format(knowledge_graph.get('description')) if 'organic' in data: organic_results = data['organic'] for result in organic_results: output += "Snippet: {}\n".format(result.get('snippet')) if 'peopleAlsoAsk' in data: people_also_ask = data['peopleAlsoAsk'] for question in people_also_ask: output += "Snippet: {}\n".format(question.get('snippet')) return output except json.JSONDecodeError: print(".") return "" except Exception as e: print(".") return "" # Function to search Wikipedia for an answer and summarize it def search_wikipedia(query): try: search_results = wikipedia.search(query) # Get the page summary of the first search result if search_results: page_title = search_results[0] page_summary = wikipedia.summary(page_title) return page_summary else: print(".") return None except wikipedia.exceptions.DisambiguationError as e: # Handle disambiguation error print(".") return None except wikipedia.exceptions.PageError as e: # Handle page not found error print(".") return None except Exception as e: # Handle other exceptions print(".") return None # Function to generate summarized paragraph using OpenAI API def generate_summary(user_input): output = get_latest_answers(user_input) page_summary = search_wikipedia(user_input) chat_answer = chat(user_input) # Generate summarized paragraph using OpenAI API response = openai.Completion.create( engine='text-davinci-003', prompt=f"Data from Google SERP API:\n{output}\nWikipedia summary:\n{page_summary}\n\nOpenAI chat response:\n{chat_answer}\n\nSummarize the above data into a paragraph.", max_tokens=200 ) summarized_paragraph = response.choices[0].text.strip() return summarized_paragraph # Define the Gradio interface def summarizer_interface(user_input): summarized_text = generate_summary(user_input) video_links = search_videos(user_input) return summarized_text, video_links iface = gr.Interface( fn=summarizer_interface, inputs="text", outputs=["text", "text"], title="Osana Web-GPT", description="Enter your query and get latest and better answer.", layout="horizontal", examples=[ ["What is the capital of France?"], ["How does photosynthesis work?"], ["Who is the president of the United States?"], ["What is the capital of Japan?"], ["How do I bake a chocolate cake?"], ["What is the meaning of life?"], ["Who painted the Mona Lisa?"], ["What is the population of New York City?"], ["How does the internet work?"], ["What is the largest planet in our solar system?"], ["What are the benefits of regular exercise?"], ] ) # Launch the interface iface.launch()