versae's picture
Add ref male
08c0f07
raw
history blame
33.4 kB
# ruff: noqa: E402
# Above allows ruff to ignore E402: module level import not at top of file
import re
import tempfile
from collections import OrderedDict
from importlib.resources import files
from pathlib import Path
import click
import gradio as gr
import numpy as np
import soundfile as sf
import torchaudio
from cached_path import cached_path
from transformers import AutoModelForCausalLM, AutoTokenizer
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
from f5_tts.model import DiT, UNetT
from f5_tts.infer.utils_infer import (
load_vocoder,
load_model,
preprocess_ref_audio_text,
infer_process,
remove_silence_for_generated_wav,
save_spectrogram,
)
DEFAULT_TTS_MODEL = "F5-TTS"
tts_model_choice = DEFAULT_TTS_MODEL
# load models
vocoder = load_vocoder()
def load_f5tts(ckpt_path=str(cached_path("hf://NbAiLab/salmon-f5-tts-north-sami/model_590000.safetensors"))):
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
return load_model(DiT, F5TTS_model_cfg, ckpt_path)
def load_e2tts(ckpt_path=str(cached_path("hf://NbAiLab/salmon-f5-tts-north-sami/model_590000.safetensors"))):
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
if ckpt_path.startswith("hf://"):
ckpt_path = str(cached_path(ckpt_path))
if vocab_path.startswith("hf://"):
vocab_path = str(cached_path(vocab_path))
if model_cfg is None:
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
F5TTS_ema_model = None # load_f5tts()
E2TTS_ema_model = None # load_e2tts() if USING_SPACES else None
custom_ema_model, pre_custom_path = None, ""
chat_model_state = None
chat_tokenizer_state = None
@gpu_decorator
def generate_response(messages, model, tokenizer):
"""Generate response using Qwen"""
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
)
generated_ids = [
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
@gpu_decorator
def infer(
ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=0.8, show_info=gr.Info
):
# ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
ref_audio = Path("./ref_male.wav").read_bytes()
ref_text = Path("./ref_male.txt").read_text()
if model == "F5-TTS":
ema_model = F5TTS_ema_model
elif model == "E2-TTS":
global E2TTS_ema_model
if E2TTS_ema_model is None:
show_info("Loading E2-TTS model...")
E2TTS_ema_model = load_e2tts()
ema_model = E2TTS_ema_model
elif isinstance(model, list) and model[0] == "Custom":
# assert not USING_SPACES, "Only official checkpoints allowed in Spaces."
global custom_ema_model, pre_custom_path
if pre_custom_path != model[1]:
show_info("Loading Custom TTS model...")
custom_ema_model = load_custom(model[1], vocab_path=model[2])
pre_custom_path = model[1]
ema_model = custom_ema_model
final_wave, final_sample_rate, combined_spectrogram = infer_process(
ref_audio,
ref_text,
gen_text,
ema_model,
vocoder,
cross_fade_duration=cross_fade_duration,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, final_sample_rate)
remove_silence_for_generated_wav(f.name)
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
# Save the spectrogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (final_sample_rate, final_wave), spectrogram_path, ref_text
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
""")
with gr.Blocks() as app_tts:
gr.Markdown("# Batched TTS")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath", visible=False, value=Path("./ref_male.wav"))
gen_text_input = gr.Textbox(label="Text to Generate", lines=10, value=Path("./sample.txt").read_text())
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
ref_text_input = gr.Textbox(
label="Reference Text",
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
lines=2,
visible=False,
value=Path("./ref_male.txt").read_text()
)
remove_silence = gr.Checkbox(
label="Remove Silences",
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
value=False,
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.3,
maximum=2.0,
value=0.8,
step=0.1,
info="Adjust the speed of the audio.",
)
cross_fade_duration_slider = gr.Slider(
label="Cross-Fade Duration (s)",
minimum=0.0,
maximum=1.0,
value=0.15,
step=0.01,
info="Set the duration of the cross-fade between audio clips.",
)
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
@gpu_decorator
def basic_tts(
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
speed_slider,
):
audio_out, spectrogram_path, ref_text_out = infer(
ref_audio_input,
ref_text_input,
gen_text_input,
tts_model_choice,
remove_silence,
cross_fade_duration_slider,
speed_slider,
)
return audio_out, spectrogram_path, gr.update(value=ref_text_out)
generate_btn.click(
basic_tts,
inputs=[
ref_audio_input,
ref_text_input,
gen_text_input,
remove_silence,
cross_fade_duration_slider,
speed_slider,
],
outputs=[audio_output, spectrogram_output, ref_text_input],
)
def parse_speechtypes_text(gen_text):
# Pattern to find {speechtype}
pattern = r"\{(.*?)\}"
# Split the text by the pattern
tokens = re.split(pattern, gen_text)
segments = []
current_style = "Regular"
for i in range(len(tokens)):
if i % 2 == 0:
# This is text
text = tokens[i].strip()
if text:
segments.append({"style": current_style, "text": text})
else:
# This is style
style = tokens[i].strip()
current_style = style
return segments
# with gr.Blocks() as app_multistyle:
# # New section for multistyle generation
# gr.Markdown(
# """
# # Multiple Speech-Type Generation
# This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
# """
# )
# with gr.Row():
# gr.Markdown(
# """
# **Example Input:**
# {Regular} Hello, I'd like to order a sandwich please.
# {Surprised} What do you mean you're out of bread?
# {Sad} I really wanted a sandwich though...
# {Angry} You know what, darn you and your little shop!
# {Whisper} I'll just go back home and cry now.
# {Shouting} Why me?!
# """
# )
# gr.Markdown(
# """
# **Example Input 2:**
# {Speaker1_Happy} Hello, I'd like to order a sandwich please.
# {Speaker2_Regular} Sorry, we're out of bread.
# {Speaker1_Sad} I really wanted a sandwich though...
# {Speaker2_Whisper} I'll give you the last one I was hiding.
# """
# )
# gr.Markdown(
# "Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
# )
# # Regular speech type (mandatory)
# with gr.Row():
# with gr.Column():
# regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
# regular_insert = gr.Button("Insert Label", variant="secondary")
# regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
# regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
# # Regular speech type (max 100)
# max_speech_types = 100
# speech_type_rows = [] # 99
# speech_type_names = [regular_name] # 100
# speech_type_audios = [regular_audio] # 100
# speech_type_ref_texts = [regular_ref_text] # 100
# speech_type_delete_btns = [] # 99
# speech_type_insert_btns = [regular_insert] # 100
# # Additional speech types (99 more)
# for i in range(max_speech_types - 1):
# with gr.Row(visible=False) as row:
# with gr.Column():
# name_input = gr.Textbox(label="Speech Type Name")
# delete_btn = gr.Button("Delete Type", variant="secondary")
# insert_btn = gr.Button("Insert Label", variant="secondary")
# audio_input = gr.Audio(label="Reference Audio", type="filepath")
# ref_text_input = gr.Textbox(label="Reference Text", lines=2)
# speech_type_rows.append(row)
# speech_type_names.append(name_input)
# speech_type_audios.append(audio_input)
# speech_type_ref_texts.append(ref_text_input)
# speech_type_delete_btns.append(delete_btn)
# speech_type_insert_btns.append(insert_btn)
# # Button to add speech type
# add_speech_type_btn = gr.Button("Add Speech Type")
# # Keep track of current number of speech types
# speech_type_count = gr.State(value=1)
# # Function to add a speech type
# def add_speech_type_fn(speech_type_count):
# if speech_type_count < max_speech_types:
# speech_type_count += 1
# # Prepare updates for the rows
# row_updates = []
# for i in range(1, max_speech_types):
# if i < speech_type_count:
# row_updates.append(gr.update(visible=True))
# else:
# row_updates.append(gr.update())
# else:
# # Optionally, show a warning
# row_updates = [gr.update() for _ in range(1, max_speech_types)]
# return [speech_type_count] + row_updates
# add_speech_type_btn.click(
# add_speech_type_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows
# )
# # Function to delete a speech type
# def make_delete_speech_type_fn(index):
# def delete_speech_type_fn(speech_type_count):
# # Prepare updates
# row_updates = []
# for i in range(1, max_speech_types):
# if i == index:
# row_updates.append(gr.update(visible=False))
# else:
# row_updates.append(gr.update())
# speech_type_count = max(1, speech_type_count)
# return [speech_type_count] + row_updates
# return delete_speech_type_fn
# # Update delete button clicks
# for i, delete_btn in enumerate(speech_type_delete_btns):
# delete_fn = make_delete_speech_type_fn(i)
# delete_btn.click(delete_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows)
# # Text input for the prompt
# gen_text_input_multistyle = gr.Textbox(
# label="Text to Generate",
# lines=10,
# placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
# )
# def make_insert_speech_type_fn(index):
# def insert_speech_type_fn(current_text, speech_type_name):
# current_text = current_text or ""
# speech_type_name = speech_type_name or "None"
# updated_text = current_text + f"{{{speech_type_name}}} "
# return gr.update(value=updated_text)
# return insert_speech_type_fn
# for i, insert_btn in enumerate(speech_type_insert_btns):
# insert_fn = make_insert_speech_type_fn(i)
# insert_btn.click(
# insert_fn,
# inputs=[gen_text_input_multistyle, speech_type_names[i]],
# outputs=gen_text_input_multistyle,
# )
# with gr.Accordion("Advanced Settings", open=False):
# remove_silence_multistyle = gr.Checkbox(
# label="Remove Silences",
# value=True,
# )
# # Generate button
# generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
# # Output audio
# audio_output_multistyle = gr.Audio(label="Synthesized Audio")
# @gpu_decorator
# def generate_multistyle_speech(
# gen_text,
# *args,
# ):
# speech_type_names_list = args[:max_speech_types]
# speech_type_audios_list = args[max_speech_types : 2 * max_speech_types]
# speech_type_ref_texts_list = args[2 * max_speech_types : 3 * max_speech_types]
# remove_silence = args[3 * max_speech_types]
# # Collect the speech types and their audios into a dict
# speech_types = OrderedDict()
# ref_text_idx = 0
# for name_input, audio_input, ref_text_input in zip(
# speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
# ):
# if name_input and audio_input:
# speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
# else:
# speech_types[f"@{ref_text_idx}@"] = {"audio": "", "ref_text": ""}
# ref_text_idx += 1
# # Parse the gen_text into segments
# segments = parse_speechtypes_text(gen_text)
# # For each segment, generate speech
# generated_audio_segments = []
# current_style = "Regular"
# for segment in segments:
# style = segment["style"]
# text = segment["text"]
# if style in speech_types:
# current_style = style
# else:
# # If style not available, default to Regular
# current_style = "Regular"
# ref_audio = speech_types[current_style]["audio"]
# ref_text = speech_types[current_style].get("ref_text", "")
# # Generate speech for this segment
# audio_out, _, ref_text_out = infer(
# ref_audio, ref_text, text, tts_model_choice, remove_silence, 0, show_info=print
# ) # show_info=print no pull to top when generating
# sr, audio_data = audio_out
# generated_audio_segments.append(audio_data)
# speech_types[current_style]["ref_text"] = ref_text_out
# # Concatenate all audio segments
# if generated_audio_segments:
# final_audio_data = np.concatenate(generated_audio_segments)
# return [(sr, final_audio_data)] + [
# gr.update(value=speech_types[style]["ref_text"]) for style in speech_types
# ]
# else:
# gr.Warning("No audio generated.")
# return [None] + [gr.update(value=speech_types[style]["ref_text"]) for style in speech_types]
# generate_multistyle_btn.click(
# generate_multistyle_speech,
# inputs=[
# gen_text_input_multistyle,
# ]
# + speech_type_names
# + speech_type_audios
# + speech_type_ref_texts
# + [
# remove_silence_multistyle,
# ],
# outputs=[audio_output_multistyle] + speech_type_ref_texts,
# )
# # Validation function to disable Generate button if speech types are missing
# def validate_speech_types(gen_text, regular_name, *args):
# speech_type_names_list = args[:max_speech_types]
# # Collect the speech types names
# speech_types_available = set()
# if regular_name:
# speech_types_available.add(regular_name)
# for name_input in speech_type_names_list:
# if name_input:
# speech_types_available.add(name_input)
# # Parse the gen_text to get the speech types used
# segments = parse_speechtypes_text(gen_text)
# speech_types_in_text = set(segment["style"] for segment in segments)
# # Check if all speech types in text are available
# missing_speech_types = speech_types_in_text - speech_types_available
# if missing_speech_types:
# # Disable the generate button
# return gr.update(interactive=False)
# else:
# # Enable the generate button
# return gr.update(interactive=True)
# gen_text_input_multistyle.change(
# validate_speech_types,
# inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
# outputs=generate_multistyle_btn,
# )
# with gr.Blocks() as app_chat:
# gr.Markdown(
# """
# # Voice Chat
# Have a conversation with an AI using your reference voice!
# 1. Upload a reference audio clip and optionally its transcript.
# 2. Load the chat model.
# 3. Record your message through your microphone.
# 4. The AI will respond using the reference voice.
# """
# )
# if not USING_SPACES:
# load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
# chat_interface_container = gr.Column(visible=False)
# @gpu_decorator
# def load_chat_model():
# global chat_model_state, chat_tokenizer_state
# if chat_model_state is None:
# show_info = gr.Info
# show_info("Loading chat model...")
# model_name = "Qwen/Qwen2.5-3B-Instruct"
# chat_model_state = AutoModelForCausalLM.from_pretrained(
# model_name, torch_dtype="auto", device_map="auto"
# )
# chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
# show_info("Chat model loaded.")
# return gr.update(visible=False), gr.update(visible=True)
# load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
# else:
# chat_interface_container = gr.Column()
# if chat_model_state is None:
# model_name = "Qwen/Qwen2.5-3B-Instruct"
# chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
# chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
# with chat_interface_container:
# with gr.Row():
# with gr.Column():
# ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
# with gr.Column():
# with gr.Accordion("Advanced Settings", open=False):
# remove_silence_chat = gr.Checkbox(
# label="Remove Silences",
# value=True,
# )
# ref_text_chat = gr.Textbox(
# label="Reference Text",
# info="Optional: Leave blank to auto-transcribe",
# lines=2,
# )
# system_prompt_chat = gr.Textbox(
# label="System Prompt",
# value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
# lines=2,
# )
# chatbot_interface = gr.Chatbot(label="Conversation")
# with gr.Row():
# with gr.Column():
# audio_input_chat = gr.Microphone(
# label="Speak your message",
# type="filepath",
# )
# audio_output_chat = gr.Audio(autoplay=True)
# with gr.Column():
# text_input_chat = gr.Textbox(
# label="Type your message",
# lines=1,
# )
# send_btn_chat = gr.Button("Send Message")
# clear_btn_chat = gr.Button("Clear Conversation")
# conversation_state = gr.State(
# value=[
# {
# "role": "system",
# "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
# }
# ]
# )
# # Modify process_audio_input to use model and tokenizer from state
# @gpu_decorator
# def process_audio_input(audio_path, text, history, conv_state):
# """Handle audio or text input from user"""
# if not audio_path and not text.strip():
# return history, conv_state, ""
# if audio_path:
# text = preprocess_ref_audio_text(audio_path, text)[1]
# if not text.strip():
# return history, conv_state, ""
# conv_state.append({"role": "user", "content": text})
# history.append((text, None))
# response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
# conv_state.append({"role": "assistant", "content": response})
# history[-1] = (text, response)
# return history, conv_state, ""
# @gpu_decorator
# def generate_audio_response(history, ref_audio, ref_text, remove_silence):
# """Generate TTS audio for AI response"""
# if not history or not ref_audio:
# return None
# last_user_message, last_ai_response = history[-1]
# if not last_ai_response:
# return None
# audio_result, _, ref_text_out = infer(
# ref_audio,
# ref_text,
# last_ai_response,
# tts_model_choice,
# remove_silence,
# cross_fade_duration=0.15,
# speed=1.0,
# show_info=print, # show_info=print no pull to top when generating
# )
# return audio_result, gr.update(value=ref_text_out)
# def clear_conversation():
# """Reset the conversation"""
# return [], [
# {
# "role": "system",
# "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
# }
# ]
# def update_system_prompt(new_prompt):
# """Update the system prompt and reset the conversation"""
# new_conv_state = [{"role": "system", "content": new_prompt}]
# return [], new_conv_state
# # Handle audio input
# audio_input_chat.stop_recording(
# process_audio_input,
# inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
# outputs=[chatbot_interface, conversation_state],
# ).then(
# generate_audio_response,
# inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
# outputs=[audio_output_chat, ref_text_chat],
# ).then(
# lambda: None,
# None,
# audio_input_chat,
# )
# # Handle text input
# text_input_chat.submit(
# process_audio_input,
# inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
# outputs=[chatbot_interface, conversation_state],
# ).then(
# generate_audio_response,
# inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
# outputs=[audio_output_chat, ref_text_chat],
# ).then(
# lambda: None,
# None,
# text_input_chat,
# )
# # Handle send button
# send_btn_chat.click(
# process_audio_input,
# inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
# outputs=[chatbot_interface, conversation_state],
# ).then(
# generate_audio_response,
# inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, remove_silence_chat],
# outputs=[audio_output_chat, ref_text_chat],
# ).then(
# lambda: None,
# None,
# text_input_chat,
# )
# # Handle clear button
# clear_btn_chat.click(
# clear_conversation,
# outputs=[chatbot_interface, conversation_state],
# )
# # Handle system prompt change and reset conversation
# system_prompt_chat.change(
# update_system_prompt,
# inputs=system_prompt_chat,
# outputs=[chatbot_interface, conversation_state],
# )
with gr.Blocks() as app:
gr.Markdown(
"""
# F5 TTS Noth Sámi (test)
This is a North Sámi implementation of [F5-TTS](https://arxiv.org/abs/2410.06885) based on [mrfakename/E2-F5-TTS](https://huggingface.co/spaces/mrfakename/E2-F5-TTS/).
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s with ✂ in the bottom right corner (otherwise might have non-optimal auto-trimmed result).
"""
)
#**NOTE: Reference text will be automatically transcribed with [Whisper North Sámi](https://huggingface.co/NbAiLab/whisper-large-sme) if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom.txt")
def load_last_used_custom():
try:
with open(last_used_custom, "r") as f:
return f.read().split(",")
except FileNotFoundError:
last_used_custom.parent.mkdir(parents=True, exist_ok=True)
return [
"hf://NbAiLab/salmon-f5-tts-north-sami/model_590000.safetensors",
"hf://NbAiLab/salmon-f5-tts-north-sami/vocab.txt",
]
def switch_tts_model(new_choice):
global tts_model_choice
if new_choice == "Custom": # override in case webpage is refreshed
custom_ckpt_path, custom_vocab_path = load_last_used_custom()
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path]
return gr.update(visible=True, value=custom_ckpt_path), gr.update(visible=True, value=custom_vocab_path)
else:
tts_model_choice = new_choice
return gr.update(visible=False), gr.update(visible=False)
def set_custom_model(custom_ckpt_path, custom_vocab_path):
global tts_model_choice
tts_model_choice = ["Custom", custom_ckpt_path, custom_vocab_path]
with open(last_used_custom, "w") as f:
f.write(f"{custom_ckpt_path},{custom_vocab_path}")
with gr.Row():
if not USING_SPACES:
choose_tts_model = gr.Radio(
choices=[DEFAULT_TTS_MODEL, "E2-TTS", "Custom"], label="Choose TTS Model", value="Custom", visible=False,
)
else:
choose_tts_model = gr.Radio(
choices=[DEFAULT_TTS_MODEL, "E2-TTS"], label="Choose TTS Model", value="Custom", visible=False,
)
custom_ckpt_path = gr.Dropdown(
choices=["hf://NbAiLab/salmon-f5-tts-north-sami/model_590000.safetensors"],
value=load_last_used_custom()[0],
allow_custom_value=True,
label="MODEL CKPT: local_path | hf://user_id/repo_id/model_ckpt",
visible=False,
)
custom_vocab_path = gr.Dropdown(
choices=["hf://NbAiLab/salmon-f5-tts-north-sami/vocab.txt"],
value=load_last_used_custom()[1],
allow_custom_value=True,
label="VOCAB FILE: local_path | hf://user_id/repo_id/vocab_file",
visible=False,
)
choose_tts_model.change(
switch_tts_model,
inputs=[choose_tts_model],
outputs=[custom_ckpt_path, custom_vocab_path],
show_progress="hidden",
)
custom_ckpt_path.change(
set_custom_model,
inputs=[custom_ckpt_path, custom_vocab_path],
show_progress="hidden",
)
custom_vocab_path.change(
set_custom_model,
inputs=[custom_ckpt_path, custom_vocab_path],
show_progress="hidden",
)
set_custom_model(custom_ckpt_path.value, custom_vocab_path.value)
#gr.TabbedInterface(
# [app_tts, app_multistyle, app_chat, app_credits],
# ["Basic-TTS", "Multi-Speech", "Voice-Chat", "Credits"],
#)
gr.TabbedInterface(
[app_tts, app_credits],
["Demo", "Credits"],
)
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
"--share",
"-s",
default=False,
is_flag=True,
help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
@click.option(
"--root_path",
"-r",
default=None,
type=str,
help='The root path (or "mount point") of the application, if it\'s not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application, e.g. set "/myapp" or full URL for application served at "https://example.com/myapp".',
)
def main(port, host, share, api, root_path):
global app
print("Starting app...")
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api, root_path=root_path)
if __name__ == "__main__":
if not USING_SPACES:
main()
else:
app.queue().launch()