import os import torch import gradio as gr import pytube as pt import spaces from transformers import pipeline from huggingface_hub import model_info MODEL_NAME = "NbAiLab/whisper-large-sme" #this always needs to stay in line 8 :D sorry for the hackiness lang = "fi" share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None auth_token = os.environ.get("AUTH_TOKEN") or True device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") @spaces.GPU(duration=120) def pipe(file, return_timestamps=False): asr = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, token=auth_token, ) asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids( language=lang, task="transcribe", no_timestamps=not return_timestamps, ) # asr.model.config.no_timestamps_token_id = asr.tokenizer.encode("<|notimestamps|>", add_special_tokens=False)[0] return asr(file, return_timestamps=return_timestamps) def transcribe(file, return_timestamps=False): if not return_timestamps: text = pipe(file)["text"] else: chunks = pipe(file, return_timestamps=True)["chunks"] text = [] for chunk in chunks: start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??" end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??" line = f"[{start_time} -> {end_time}] {chunk['text']}" text.append(line) text = "\n".join(text) return text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def yt_transcribe(yt_url, return_timestamps=False): yt = pt.YouTube(yt_url) html_embed_str = _return_yt_html_embed(yt_url) stream = yt.streams.filter(only_audio=True)[0] stream.download(filename="audio.mp3") text = transcribe("audio.mp3", return_timestamps=return_timestamps) return html_embed_str, text demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.components.Audio(sources=['upload', 'microphone'], type="filepath"), # gr.components.Checkbox(label="Return timestamps"), ], outputs="text", theme="huggingface", title="Whisper Demo: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), # gr.components.Checkbox(label="Return timestamps"), ], examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]], outputs=["html", "text"], theme="huggingface", title="Whisper Demo: Transcribe YouTube", description=( "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:" f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of" " arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) demo.launch(share=True).queue()