NegiTurkey's picture
Update app.py
abf8cc6 verified
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import os
import zipfile
from PIL import Image
output_folder = 'output_images'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
torch.set_float32_matmul_precision(["high", "highest"][0])
try:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cpu")
except Exception as e:
print(f"Error loading model: {e}")
raise
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def process_single_image(image, output_type="mask"):
if image is None:
return [None, None], None
im = load_img(image, output_type="pil")
if im is None:
return [None, None], None
im = im.convert("RGB")
image_size = im.size
origin = im.copy()
input_images = transform_image(im).unsqueeze(0).to("cpu")
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
processed_im = im.copy()
processed_im.putalpha(mask)
output_file_path = os.path.join(output_folder, "output_image_i2i.png")
processed_im.save(output_file_path)
if output_type == "origin":
return [processed_im, origin], output_file_path
else:
return [processed_im, mask], output_file_path
def process_image_from_url(url, output_type="mask"):
if url is None or url.strip() == "":
return [None, None], None
try:
im = load_img(url, output_type="pil")
if im is None:
return [None, None], None
im = im.convert("RGB")
image_size = im.size
origin = im.copy()
input_images = transform_image(im).unsqueeze(0).to("cpu")
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
processed_im = im.copy()
processed_im.putalpha(mask)
output_file_path = os.path.join(output_folder, "output_image_url.png")
processed_im.save(output_file_path)
if output_type == "origin":
return [processed_im, origin], output_file_path
else:
return [processed_im, mask], output_file_path
except Exception as e:
return [None, None], str(e)
def process_batch_images(images):
output_paths = []
if not images:
return [], None
for idx, image_path in enumerate(images):
im = load_img(image_path, output_type="pil")
if im is None:
continue
im = im.convert("RGB")
image_size = im.size
input_images = transform_image(im).unsqueeze(0).to("cpu")
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
im.putalpha(mask)
output_file_path = os.path.join(output_folder, f"output_image_batch_{idx + 1}.png")
im.save(output_file_path)
output_paths.append(output_file_path)
zip_file_path = os.path.join(output_folder, "processed_images.zip")
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
for file in output_paths:
zipf.write(file, os.path.basename(file))
return output_paths, zip_file_path
image = gr.Image(label="Upload an image")
text = gr.Textbox(label="Paste an image URL")
batch_image = gr.File(label="Upload multiple images", type="filepath", file_count="multiple")
slider1 = ImageSlider(label="Processed Image", type="pil")
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
tab1 = gr.Interface(
fn=process_single_image,
inputs=[image, gr.Radio(choices=["mask", "origin"], value="mask", label="Select Output Type")],
outputs=[slider1, gr.File(label="PNG Output")],
examples=[["chameleon.jpg"]],
api_name="image"
)
tab2 = gr.Interface(
fn=process_image_from_url,
inputs=[text, gr.Radio(choices=["mask", "origin"], value="mask", label="Select Output Type")],
outputs=[slider2, gr.File(label="PNG Output")],
examples=[["https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"]],
api_name="text"
)
tab3 = gr.Interface(
fn=process_batch_images,
inputs=batch_image,
outputs=[gr.Gallery(label="Processed Images"), gr.File(label="Download Processed Files")],
api_name="batch"
)
demo = gr.TabbedInterface(
[tab1, tab2, tab3],
["image", "text", "batch"],
title="Multi Birefnet for Background Removal"
)
if __name__ == "__main__":
demo.launch()