NegiTurkey commited on
Commit
30b2582
·
verified ·
1 Parent(s): 69fdba2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -12,7 +12,7 @@ torch.set_float32_matmul_precision(["high", "highest"][0])
12
  birefnet = AutoModelForImageSegmentation.from_pretrained(
13
  "ZhengPeng7/BiRefNet", trust_remote_code=True
14
  )
15
- birefnet.to("cuda")
16
  transform_image = transforms.Compose(
17
  [
18
  transforms.Resize((1024, 1024)),
@@ -27,7 +27,7 @@ def fn(image):
27
  im = im.convert("RGB")
28
  image_size = im.size
29
  origin = im.copy()
30
- input_images = transform_image(im).unsqueeze(0).to("cuda")
31
 
32
  with torch.no_grad():
33
  preds = birefnet(input_images)[-1].sigmoid().cpu()
@@ -47,7 +47,7 @@ def fn_url(url):
47
  im = im.convert("RGB")
48
  origin = im.copy()
49
  image_size = im.size
50
- input_images = transform_image(im).unsqueeze(0).to("cuda")
51
 
52
  with torch.no_grad():
53
  preds = birefnet(input_images)[-1].sigmoid().cpu()
@@ -68,7 +68,7 @@ def batch_fn(images):
68
  im = load_img(image_path, output_type="pil")
69
  im = im.convert("RGB")
70
  image_size = im.size
71
- input_images = transform_image(im).unsqueeze(0).to("cuda")
72
 
73
  with torch.no_grad():
74
  preds = birefnet(input_images)[-1].sigmoid().cpu()
 
12
  birefnet = AutoModelForImageSegmentation.from_pretrained(
13
  "ZhengPeng7/BiRefNet", trust_remote_code=True
14
  )
15
+ birefnet.to("cpu")
16
  transform_image = transforms.Compose(
17
  [
18
  transforms.Resize((1024, 1024)),
 
27
  im = im.convert("RGB")
28
  image_size = im.size
29
  origin = im.copy()
30
+ input_images = transform_image(im).unsqueeze(0).to("cpu")
31
 
32
  with torch.no_grad():
33
  preds = birefnet(input_images)[-1].sigmoid().cpu()
 
47
  im = im.convert("RGB")
48
  origin = im.copy()
49
  image_size = im.size
50
+ input_images = transform_image(im).unsqueeze(0).to("cpu")
51
 
52
  with torch.no_grad():
53
  preds = birefnet(input_images)[-1].sigmoid().cpu()
 
68
  im = load_img(image_path, output_type="pil")
69
  im = im.convert("RGB")
70
  image_size = im.size
71
+ input_images = transform_image(im).unsqueeze(0).to("cpu")
72
 
73
  with torch.no_grad():
74
  preds = birefnet(input_images)[-1].sigmoid().cpu()