File size: 1,707 Bytes
699ec42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import streamlit as st
from ai4bharat.transliteration import XlitEngine
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
from IndicTransTokenizer import IndicProcessor

# Initialize the transliteration engine and model
e = XlitEngine(["gu", 'en'], beam_width=10, src_script_type="en")
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True)
ip = IndicProcessor(inference=True)

def english_to_gujarati(text):
    return e.translit_sentence(text)['gu']

def translate_question(english_question):
    gujarati_question = english_to_gujarati(english_question)
    lst = [gujarati_question]
    
    batch = ip.preprocess_batch(lst, src_lang="guj_Gujr", tgt_lang="eng_Latn")
    batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt")

    with torch.inference_mode():
        outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256)

    with tokenizer.as_target_tokenizer():
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True)

    outputs = ip.postprocess_batch(outputs, lang="eng_Latn")
    return outputs

# Streamlit UI
st.title("English to Gujarati Translation")
st.write("Enter your question in English:")

english_question = st.text_input("Question:")

if st.button("Translate"):
    if english_question:
        translated = translate_question(english_question)
        st.write("Transliterated and Translated question:", translated)
    else:
        st.write("Please enter a question.")