# app.py from flask import Flask, render_template, request, jsonify from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor import torchaudio from torchaudio.transforms import Resample import torch import gradio as gr app = Flask(__name__) # Initialize TTS model from Hugging Face tts_model_name = "Kamonwan/blip-image-captioning-new" tts = pipeline(task="text-to-speech", model=tts_model_name) # Initialize Blip model for image captioning model_id = "Kamonwan/blip-image-captioning-new" blip_model = BlipForConditionalGeneration.from_pretrained(model_id) blip_processor = BlipProcessor.from_pretrained(model_id) def generate_caption(image): # Generate caption from image using Blip model inputs = blip_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] # Use TTS model to convert generated caption to audio audio_output = tts(generated_caption) audio_path = "generated_audio_resampled.wav" torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"]) return generated_caption, audio_path @app.route('/upload', methods=['POST']) def generate_caption_api(): image = request.files['image'].read() generated_caption, audio_path = generate_caption(image) return jsonify({'generated_caption': generated_caption, 'audio_path': audio_path}) @app.route('/') def index(): return render_template("index.html") if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)