Spaces:
Runtime error
Runtime error
File size: 26,362 Bytes
cfbfaf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
'''
This file has been 100% copied from this PR to the Transformers library:
https://github.com/huggingface/transformers/pull/27557
Author: Saibo-creator
Author GitHub: https://github.com/Saibo-creator
All credits go to the author.
'''
import logging
import re
import time
from abc import ABC
from functools import lru_cache
from typing import Dict, List
import torch
from modules import shared
logger = logging.getLogger(__name__)
########################
# EBNF Grammar Parsing #
########################
END_OF_ALTERNATE_MARKER = 0
END_OF_RULE_MARKER = 0
TO_BE_FILLED_MARKER = 0
REF_RULE_MARKER = 1
LITERAL_MARKER = 2
class ParseState:
def __init__(self):
self.symbol_ids = {}
self.grammar_encoding = [] # old name: out_grammar
def get_symbol_id(state, src):
if src not in state.symbol_ids:
state.symbol_ids[src] = len(state.symbol_ids)
return state.symbol_ids[src]
def generate_symbol_id(state, base_name):
next_id = len(state.symbol_ids)
state.symbol_ids[base_name + "_" + str(next_id)] = next_id
return next_id
def is_word_char(c):
return c.isalnum() or c == "-" or c == "_"
def hex_to_int(c):
if c.isdigit():
return int(c)
elif "a" <= c.lower() <= "f":
return ord(c.lower()) - ord("a") + 10
return -1
def remove_leading_white_space(src, newline_ok):
"""
Skips over whitespace and comments in the input string.
This function processes the input string, skipping over any spaces, tabs,
and content following a '#' character, which denotes a comment. The parsing
of a comment continues until the end of the line (denoted by newline characters
'\r' or '\n'). If the 'newline_ok' parameter is set to False, the function
will stop processing and return the remaining string upon encountering a
newline character, otherwise it will skip over newline characters as well.
Parameters:
src (str): The input string to be processed.
newline_ok (bool): A flag indicating whether encountering a newline character
should stop the parsing (False) or if it should be skipped (True).
Returns:
str: The remaining portion of the input string after skipping whitespace and comments.
"""
pos = 0
while pos < len(src) and (src[pos].isspace() or src[pos] == "#"):
if src[pos] == "#":
while pos < len(src) and src[pos] not in ("\r", "\n"):
pos += 1
else:
if not newline_ok and src[pos] in ("\r", "\n"):
break
pos += 1
return src[pos:]
def parse_name(src):
pos = 0
while pos < len(src) and is_word_char(src[pos]):
pos += 1
if pos == 0:
raise RuntimeError("expecting name at " + src)
return src[:pos], src[pos:]
def parse_char(src):
"""
parse the leading char from the input string
:param src:
:return: char, remaining_src
"""
# if we have a backslash, it's maybe an escape
if src[0] == "\\":
esc = src[1]
if esc == "x":
first = hex_to_int(src[2])
if first > -1:
second = hex_to_int(src[3])
if second > -1:
return (first << 4) + second, src[4:]
raise RuntimeError("expecting \\xNN at " + src)
elif esc in ('"', "[", "]"):
return esc, src[2:]
elif esc == "r":
return "\r", src[2:]
elif esc == "n":
return "\n", src[2:]
elif esc == "t":
return "\t", src[2:]
raise RuntimeError("unknown escape at " + src)
elif src:
return src[0], src[1:]
raise RuntimeError("unexpected end of input")
def parse_sequence(state, src, rule_name, outbuf, is_nested):
out_start_pos = len(outbuf)
# sequence size, will be replaced at end when known
outbuf.append(TO_BE_FILLED_MARKER)
last_sym_start = len(outbuf)
remaining_src = src
while remaining_src:
if remaining_src[0] == '"': # literal string
remaining_src = remaining_src[1:]
last_sym_start = len(outbuf)
while remaining_src[0] != '"':
char, remaining_src = parse_char(remaining_src)
# each char of a literal is encoded as a "range" of char - char
outbuf.append(LITERAL_MARKER)
outbuf.append(ord(char))
outbuf.append(ord(char))
remaining_src = remove_leading_white_space(remaining_src[1:], is_nested)
elif remaining_src[0] == "[": # char range(s)
remaining_src = remaining_src[1:]
last_sym_start = len(outbuf)
# num chars in range - replaced at end of loop
outbuf.append(TO_BE_FILLED_MARKER)
while remaining_src[0] != "]":
char, remaining_src = parse_char(remaining_src)
outbuf.append(ord(char))
if remaining_src[0] == "-" and remaining_src[1] != "]":
endchar_pair, remaining_src = parse_char(remaining_src[1:])
outbuf.append(ord(endchar_pair))
else:
# chars that aren't part of a c1-c2 range are just doubled (i.e., c-c)
outbuf.append(ord(char))
# replace num chars with actual
outbuf[last_sym_start] = len(outbuf) - last_sym_start - 1
remaining_src = remove_leading_white_space(remaining_src[1:], is_nested)
elif is_word_char(remaining_src[0]): # rule reference
name, remaining_src = parse_name(remaining_src)
ref_rule_id = get_symbol_id(state, name)
remaining_src = remove_leading_white_space(remaining_src, is_nested)
last_sym_start = len(outbuf)
outbuf.append(REF_RULE_MARKER)
outbuf.append(ref_rule_id)
elif remaining_src[0] == "(": # grouping
# parse nested alternates into synthesized rule
remaining_src = remove_leading_white_space(remaining_src[1:], True)
sub_rule_id = generate_symbol_id(state, rule_name)
remaining_src = parse_alternates(state, remaining_src, rule_name, sub_rule_id, True)
last_sym_start = len(outbuf)
# output reference to synthesized rule
outbuf.append(REF_RULE_MARKER)
outbuf.append(sub_rule_id)
if remaining_src[0] != ")":
raise RuntimeError("expecting ')' at " + remaining_src)
remaining_src = remove_leading_white_space(remaining_src[1:], is_nested)
elif remaining_src[0] in ("*", "+", "?"): # repetition operator
if len(outbuf) - out_start_pos - 1 == 0:
raise RuntimeError("expecting preceeding item to */+/? at " + remaining_src)
out_grammar = state.grammar_encoding
# apply transformation to previous symbol (last_sym_start -
# end) according to rewrite rules:
# S* --> S' ::= S S' |
# S+ --> S' ::= S S' | S
# S? --> S' ::= S |
sub_rule_id = generate_symbol_id(state, rule_name)
out_grammar.append(sub_rule_id)
sub_rule_start = len(out_grammar)
# placeholder for size of 1st alternate
out_grammar.append(TO_BE_FILLED_MARKER)
# add preceding symbol to generated rule
out_grammar.extend(outbuf[last_sym_start:])
if remaining_src[0] in ("*", "+"):
# cause generated rule to recurse
out_grammar.append(REF_RULE_MARKER)
out_grammar.append(sub_rule_id)
# apply actual size
out_grammar[sub_rule_start] = len(out_grammar) - sub_rule_start
# mark end of 1st alternate
out_grammar.append(END_OF_ALTERNATE_MARKER)
sub_rule_start = len(out_grammar)
# placeholder for size of 2nd alternate
out_grammar.append(TO_BE_FILLED_MARKER)
if remaining_src[0] == "+":
# add preceding symbol as alternate only for '+'
out_grammar.extend(outbuf[last_sym_start:])
# apply actual size of 2nd alternate
out_grammar[sub_rule_start] = len(out_grammar) - sub_rule_start
# mark end of 2nd alternate, then end of rule
out_grammar.append(END_OF_ALTERNATE_MARKER)
out_grammar.append(END_OF_RULE_MARKER)
# in original rule, replace previous symbol with reference to generated rule
outbuf[last_sym_start:] = [1, sub_rule_id]
remaining_src = remove_leading_white_space(remaining_src[1:], is_nested)
else:
break
# apply actual size of this alternate sequence
outbuf[out_start_pos] = len(outbuf) - out_start_pos
# mark end of alternate
outbuf.append(END_OF_ALTERNATE_MARKER)
return remaining_src
def parse_alternates(state, src, rule_name, rule_id, is_nested):
outbuf = []
remaining_src = parse_sequence(state, src, rule_name, outbuf, is_nested)
while remaining_src and remaining_src[0] == "|":
remaining_src = remove_leading_white_space(remaining_src[1:], True)
remaining_src = parse_sequence(state, remaining_src, rule_name, outbuf, is_nested)
state.grammar_encoding.append(rule_id)
state.grammar_encoding.extend(outbuf)
state.grammar_encoding.append(0)
return remaining_src
def parse_rule(state, src):
name, remaining_src = parse_name(src)
remaining_src = remove_leading_white_space(remaining_src, False)
rule_id = get_symbol_id(state, name)
if remaining_src[:3] != "::=":
raise RuntimeError("expecting ::= at " + remaining_src)
remaining_src = remove_leading_white_space(remaining_src[3:], True)
remaining_src = parse_alternates(state, remaining_src, name, rule_id, False)
if remaining_src and remaining_src[0] == "\r":
remaining_src = remaining_src[2:] if remaining_src[1] == "\n" else remaining_src[1:]
elif remaining_src and remaining_src[0] == "\n":
remaining_src = remaining_src[1:]
elif remaining_src:
raise RuntimeError("expecting newline or end at " + remaining_src)
return remove_leading_white_space(remaining_src, True)
def parse_ebnf(src):
try:
state = ParseState()
grammar_repr = remove_leading_white_space(src, True)
last_grammar_repr = ""
while grammar_repr:
if last_grammar_repr:
last_parsed_rule_len = len(last_grammar_repr) - len(grammar_repr)
logger.debug(f"last_parsed_rule: {last_grammar_repr[:last_parsed_rule_len]}")
last_grammar_repr = grammar_repr
grammar_repr = parse_rule(state, grammar_repr)
state.grammar_encoding.append(0xFFFF)
return state
except RuntimeError as err:
logger.warning("error parsing grammar:", err)
return ParseState()
def print_rule(file, grammar_encoding, index, symbol_id_names):
rule_id = grammar_encoding[index]
print(f"<{index}>{symbol_id_names[rule_id]} ::=", end=" ", file=file)
pos = index + 1
while grammar_encoding[pos]:
if pos - 1 > index:
print("|", end=" ", file=file)
pos += 1 # sequence size, not needed here
while grammar_encoding[pos]:
if grammar_encoding[pos] == REF_RULE_MARKER:
ref_rule_id = grammar_encoding[pos + 1]
print(
f"<{pos}>{symbol_id_names[ref_rule_id]}",
end=" ",
file=file,
)
pos += 2
else:
print("<{}>[".format(pos), end="", file=file)
num_chars = grammar_encoding[pos]
pos += 1
for i in range(0, num_chars, 2):
print("{}-".format(chr(grammar_encoding[pos + i])), end="", file=file)
if i + 1 < num_chars:
print("{}".format(chr(grammar_encoding[pos + i + 1])), end="", file=file)
print("]", end=" ", file=file)
pos += num_chars
pos += 1
print(file=file)
return pos + 1
def print_grammar(file, state):
pos = 0
symbol_id_names = {v: k for k, v in state.symbol_ids.items()}
print("Grammar Rules:", file=file)
while state.grammar_encoding[pos] != 0xFFFF:
pos = print_rule(file, state.grammar_encoding, pos, symbol_id_names)
pos = 0
print("\nBinary representation:", file=file)
while state.grammar_encoding[pos] != 0xFFFF:
print(f"{state.grammar_encoding[pos]:04x}", end=" ", file=file)
pos += 1
print("ffff\n")
###################################
# EBNF Grammar Parsing ends here #
###################################
class GrammarConstraint(ABC):
def __init__(self, grammar_str, start_rule_name, tokenizer):
self.tt = 0
self.nt = 0
state = parse_ebnf(grammar_str)
grammar_encoding = state.grammar_encoding
self.start_rule_id = state.symbol_ids.get(start_rule_name)
self.eos_token_id = tokenizer.eos_token_id
self.token_trie = TokenTrie(tokenizer)
self.tokenizer = tokenizer
self.grammar_encoding = grammar_encoding
pos = 0
rules: Dict[int, int] = {}
while grammar_encoding[pos] != 0xFFFF:
rule_id = grammar_encoding[pos]
# Store the current position in the 'rules' list at the index corresponding to rule_id.
# This effectively maps each rule_id to its position in the grammar encoding.
rules[rule_id] = pos
pos += 1
# Continue to the next rule in the encoding.
# The loop advances by the size indicated at the current position (grammar_encoding[pos])
# plus one for the size field itself.
while grammar_encoding[pos]:
pos += 1 + grammar_encoding[pos]
# Now we're at the end of the rule,
# so advance to the next rule by skipping the 0, which means 'end of rule'.
pos += 1
self.start_rule_pos = rules[self.start_rule_id]
self.rules_pos_dict: Dict[int, int] = rules
def init_stacks(self):
# suppose the start rule position is 0, then grammar_encoding[0] = rule_id
# grammar_encoding[1] = rule_size
# grammar_encoding[2] = rule_type
# this is why we need to add 2 to the start rule position
stack = [self.start_rule_pos + 2]
# convert to tuple for caching(immutable)
return self.advance_stack(tuple(stack))
# For each stack, resolve rules to find the actual characters that are
# accepted by this stack (not the set of sub-rules).
# This is where the parsing happens.
# The parsing is a top-down, left-to-right, depth-first traversal of the
# grammar.
@lru_cache(maxsize=32768)
def advance_stack(self, stack):
stack = list(stack)
# If the stack is empty, we're done. Because no more tokens should be accepted.
if len(stack) == 0:
return [stack]
# Get the top of the stack.
pos = stack[-1]
# If the stack head is a terminal(literal), we can resolve it immediately.
# literal is marked with 2 in the grammar encoding.
if self.grammar_encoding[pos] > 1:
return [stack]
# The stack head is a nonterminal (a rule reference, 1 in the grammar encoding).
# Resolving this rule gives a set of one or more possible positions
# (e.g. two in `a ::= b | c`)
# We pop the current rule off the stack and, for each option, push:
# - the symbol following this symbol in the current rule; then
# - the first symbol of the resolved rule.
referenced_rule_id = self.grammar_encoding[pos + 1]
# subpos should points to the size of the subrule
subpos = self.rules_pos_dict[referenced_rule_id] + 1
stacks: List[List[int]] = []
# do depth-first search to find all possible rules and check the next terminal
# When this value is non-zero, it indicates that subpos is not yet at the end of the rule, so we can continue.
# here subpos is a pointer, and the value in the rule encoding can never be 0 except for the end of the rule.
while self.grammar_encoding[subpos]:
new_stack = stack[:-1]
if self.grammar_encoding[pos + 2]:
# check if there is a next symbol in the current rule, e.g. `a ::= b c | d`
# if yes, push the pos to rule_size to the stack
new_stack.append(pos + 2)
# if the type of the next symbol is not "empty", push the first symbol of the resolved rule to the stack
if self.grammar_encoding[subpos + 1]:
new_stack.append(subpos + 1)
stacks.extend(self.advance_stack(tuple(new_stack)))
# The increment subpos += self.grammar_encoding[subpos] + 1
# moves subpos forward in the grammar encoding array to the next alternative in the current rule.
subpos += self.grammar_encoding[subpos] + 1
return stacks
def accept_char(self, *args, **kwargs):
"""Process a byte according to the grammar rules."""
raise NotImplementedError
def accept_token_id(self, *args, **kwargs):
"""Process a token according to the grammar rules."""
raise NotImplementedError
def filter_vocab(self, *args, **kwargs):
raise NotImplementedError
class IncrementalGrammarConstraint(GrammarConstraint):
def __init__(self, grammar_str, start_rule_name, tokenizer):
super().__init__(grammar_str, start_rule_name, tokenizer)
def accept_char(self, byte, stacks):
new_stacks = []
for stack in stacks:
# stack is empty
if not stack:
continue
pos = stack[-1]
num_chars = self.grammar_encoding[pos]
# to make pos point to the size of the char range rule
pos += 1
found = False
for i in range(0, num_chars, 2):
if self.grammar_encoding[pos + i] <= byte and byte <= self.grammar_encoding[pos + i + 1]:
found = True
break
if not found:
continue
pos += num_chars
new_stack = stack[:-1]
if self.grammar_encoding[pos]:
new_stack.append(pos)
new_stacks.extend(self.advance_stack(tuple(new_stack)))
return new_stacks
def accept_string(self, string: str, stacks: List[List[int]]):
_bytes = bytes(string, "utf-8")
for byte in _bytes:
stacks = self.accept_char(byte, stacks)
return stacks
def accept_token_id(self, token_id: int, stacks: List[List[int]]):
if token_id == self.eos_token_id:
if stacks and all(len(stack) != 0 for stack in stacks):
raise Exception(
f"At least one of the stack should be empty when EOS is reached. However, "
f"the stacks are {stacks}"
)
return []
for byte in self.token_trie.id2str(token_id):
stacks = self.accept_char(byte, stacks)
# check updated stacks
# TODO, I commented this out because it will fail when the stack is empty
# empty stack means the end of the grammar
# assert stacks != []
return stacks
def accept_token_ids(self, token_ids: List[int], stacks: List[List[int]], as_string=True):
if as_string:
string = self.tokenizer.decode(token_ids)
stacks = self.accept_string(string, stacks)
else:
for token_id in token_ids:
stacks = self.accept_token_id(token_id, stacks)
return stacks
def batch_filter_vocab(self, batch_stacks, device):
batch_acceptance = []
for stacks in batch_stacks:
batch_acceptance.append(self.filter_vocab(stacks, device))
return torch.stack(batch_acceptance)
def filter_vocab(self, stacks, device):
if not stacks: # Check if stacks is empty
# Handle the empty case: for example, return a tensor of False
# The size of the tensor should match the size of your vocabulary
vocab_size = len(self.token_trie)
logger.debug(f"sum of acceptance: {0}")
return torch.zeros(vocab_size, dtype=torch.bool, device=device)
acceptance_matrix = torch.cat([self.token_acceptance_for_stack(tuple(stack), device) for stack in stacks])
# Merge stacks: any True => True
acceptance = acceptance_matrix.reshape(len(stacks), -1).any(dim=0)
logger.debug(f"sum of acceptance: {acceptance.sum()}")
return acceptance
# For each sub-rule in the grammar, cache whether each byte is accepted.
@lru_cache(maxsize=None)
def pos_char_acceptance(self, pos):
acceptance = [False] * 256
num_chars = self.grammar_encoding[pos]
pos += 1
for i in range(0, num_chars, 2):
start = self.grammar_encoding[pos + i]
end = self.grammar_encoding[pos + i + 1]
for j in range(start, end + 1):
acceptance[j] = True
return acceptance
# Probably this should be configurable. If the grammar has an exceedingly
# large number of states, the correct setting is a tradeoff between GPU
# RAM usage and recomputation time.
#
# The main variable that pushes usage up here is number of states in the
# grammar.
@lru_cache(maxsize=32768)
def token_acceptance_for_stack(self, stack, device):
st = time.time()
stack = list(stack) # needs to come in as a tuple for lru_cache
accepts = [False] * len(self.token_trie)
accepts[self.eos_token_id] = len(stack) == 0
if len(stack) == 0:
logger.debug("empty stack")
def traverse_trie(trie, stacks):
for byte, next_trie in trie.items():
if byte == LEAF:
token_id = next_trie
if token_id != self.eos_token_id:
accepts[token_id] = bool(stacks)
continue
new_stacks = []
for stk in stacks:
if not stk:
continue
pos = stk[-1]
num_chars = self.grammar_encoding[pos]
if not self.pos_char_acceptance(pos)[byte]:
continue
pos += num_chars + 1
new_stack = stk[:-1]
if self.grammar_encoding[pos]:
new_stack.append(pos)
new_stacks.extend(self.advance_stack(tuple(new_stack)))
if new_stacks:
traverse_trie(next_trie, new_stacks)
traverse_trie(self.token_trie.trie, [stack])
et = time.time() - st
x = torch.tensor(accepts, dtype=torch.bool, device=device)
self.tt += et
self.nt += 1
return x
class StaticGrammarConstraint(GrammarConstraint):
def __init__(self, grammar_str, start_rule_name, tokenizer):
super().__init__(grammar_str, start_rule_name, tokenizer)
def accept_char(self):
raise NotImplementedError
#################
# DATA STRUCTURES
#################
LEAF = -1
class TokenTrie:
def __init__(self, tokenizer):
self.eos_token_id = tokenizer.eos_token_id
self.tokens = []
self.trie = {}
self.load_tokens(tokenizer)
def id2str(self, token_id):
return self.tokens[token_id]
def __len__(self):
return len(self.tokens)
def load_tokens(self, tokenizer):
def replace_hex(match):
hex_value = match.group(1)
return chr(int(hex_value, 16))
if "gpt2" in tokenizer.__class__.__name__.lower():
special = tokenizer.additional_special_tokens_ids
# Here, the decoder does a string replace on a bunch of sequences
# like ' .' for '.'. This interferes with our assumptions, where a
# token should always have exactly one representation.
# Fortunately(?) text-generation-inference doesn't seem to run this
# cleanup, so we get extraneous spaces. So, in order to generate
# the right token set for TGI, we have to skip the space trimming.
# See:
# https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3588-L3600
def fmt_token(id):
if id in special:
return None
return bytes(tokenizer.decode([id], clean_up_tokenization_spaces=False), "utf-8")
elif "llama" in tokenizer.__class__.__name__.lower():
def fmt_token(id):
token = tokenizer.convert_ids_to_tokens(id)
token = re.sub(r"<0x([0-9a-fA-F]{2})>", replace_hex, token)
token = token.replace("β", " ")
return bytes(token, "utf-8")
else:
print("Warning: unrecognized tokenizer: using default token formatting")
def fmt_token(id):
token = tokenizer.convert_ids_to_tokens(id)
return bytes(token, "utf-8")
# note: vocab_size doesn't work here because there are also
# get_added_vocab() tokens
self.tokens = [fmt_token(i) for i in range(len(tokenizer.get_vocab()))]
for token_id, token_bytes in enumerate(self.tokens):
if token_bytes is not None:
self.insert_into_trie(self.trie, token_bytes, token_id)
def insert_into_trie(self, trie, token_bytes, token_id):
current = trie
for byte in token_bytes:
if byte not in current:
current[byte] = {}
current = current[byte]
current[LEAF] = token_id
@lru_cache(maxsize=5)
def initialize_grammar(grammar_string):
return IncrementalGrammarConstraint(grammar_string.strip(), start_rule_name="root", tokenizer=shared.tokenizer)
|