Spaces:
Runtime error
Runtime error
import time | |
import numpy as np | |
from numpy.linalg import norm | |
from extensions.openai.embeddings import get_embeddings | |
moderations_disabled = False # return 0/false | |
category_embeddings = None | |
antonym_embeddings = None | |
categories = ["sexual", "hate", "harassment", "self-harm", "sexual/minors", "hate/threatening", "violence/graphic", "self-harm/intent", "self-harm/instructions", "harassment/threatening", "violence"] | |
flag_threshold = 0.5 | |
def get_category_embeddings() -> dict: | |
global category_embeddings, categories | |
if category_embeddings is None: | |
embeddings = get_embeddings(categories).tolist() | |
category_embeddings = dict(zip(categories, embeddings)) | |
return category_embeddings | |
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float: | |
return np.dot(a, b) / (norm(a) * norm(b)) | |
# seems most openai like with all-mpnet-base-v2 | |
def mod_score(a: np.ndarray, b: np.ndarray) -> float: | |
return 2.0 * np.dot(a, b) | |
def moderations(input): | |
global category_embeddings, categories, flag_threshold, moderations_disabled | |
results = { | |
"id": f"modr-{int(time.time()*1e9)}", | |
"model": "text-moderation-001", | |
"results": [], | |
} | |
if moderations_disabled: | |
results['results'] = [{ | |
'categories': dict([(C, False) for C in categories]), | |
'category_scores': dict([(C, 0.0) for C in categories]), | |
'flagged': False, | |
}] | |
return results | |
category_embeddings = get_category_embeddings() | |
# input, string or array | |
if isinstance(input, str): | |
input = [input] | |
for in_str in input: | |
for ine in get_embeddings([in_str]): | |
category_scores = dict([(C, mod_score(category_embeddings[C], ine)) for C in categories]) | |
category_flags = dict([(C, bool(category_scores[C] > flag_threshold)) for C in categories]) | |
flagged = any(category_flags.values()) | |
results['results'].extend([{ | |
'flagged': flagged, | |
'categories': category_flags, | |
'category_scores': category_scores, | |
}]) | |
print(results) | |
return results | |