File size: 14,367 Bytes
54fe84c
 
 
 
 
 
 
 
 
2076f18
54fe84c
 
 
 
 
 
 
 
 
9f1ac0e
54fe84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdfd068
54fe84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aacb80
 
54fe84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85ddeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54fe84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85ddeb
 
 
54fe84c
 
 
 
6914ff7
e85ddeb
04fc0d0
 
e85ddeb
 
6914ff7
54fe84c
e85ddeb
54fe84c
 
 
 
 
 
 
920380e
 
 
 
 
 
54fe84c
 
920380e
54fe84c
 
 
 
 
 
 
 
 
 
 
920380e
54fe84c
 
 
 
 
 
 
 
80e7dca
54fe84c
10210b4
 
54fe84c
 
 
e85ddeb
54fe84c
e85ddeb
54fe84c
 
920380e
54fe84c
 
 
cdfd068
e85ddeb
54fe84c
cdfd068
54fe84c
e85ddeb
cdfd068
54fe84c
 
e85ddeb
54fe84c
 
 
 
e85ddeb
2076f18
 
e85ddeb
 
54fe84c
 
 
 
 
 
 
 
 
920380e
 
 
 
 
 
 
54fe84c
 
 
 
 
 
e85ddeb
54fe84c
 
 
 
09962d6
 
54fe84c
 
 
 
bc02504
54fe84c
 
 
 
 
 
e85ddeb
54fe84c
 
 
 
1b68cf8
54fe84c
 
0aacb80
54fe84c
e85ddeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from utils import language_dict
import math
import torch
import gc
import time
from faster_whisper import WhisperModel
import os
import re
import uuid
import shutil


def get_language_name(lang_code):
    global language_dict
    # Iterate through the language dictionary
    for language, details in language_dict.items():
        # Check if the language code matches
        if details["lang_code"] == lang_code:
            return language  # Return the language name
    return lang_code

def clean_file_name(file_path):
    # Get the base file name and extension
    file_name = os.path.basename(file_path)
    file_name, file_extension = os.path.splitext(file_name)

    # Replace non-alphanumeric characters with an underscore
    cleaned = re.sub(r'[^a-zA-Z\d]+', '_', file_name)

    # Remove any multiple underscores
    clean_file_name = re.sub(r'_+', '_', cleaned).strip('_')

    # Generate a random UUID for uniqueness
    random_uuid = uuid.uuid4().hex[:6]

    # Combine cleaned file name with the original extension
    clean_file_path = os.path.join(os.path.dirname(file_path), clean_file_name + f"_{random_uuid}" + file_extension)

    return clean_file_path



def format_segments(segments):
    saved_segments = list(segments)
    sentence_timestamp = []
    words_timestamp = []
    speech_to_text = ""

    for i in saved_segments:
        temp_sentence_timestamp = {}
        # Store sentence information in sentence_timestamp
        text = i.text.strip()
        sentence_id = len(sentence_timestamp)  # Get the current index for the new entry
        sentence_timestamp.append({
            "id": sentence_id,  # Use the index as the id
            "text": text,
            "start": i.start,
            "end": i.end,
            "words": []  # Initialize words as an empty list within the sentence
        })
        speech_to_text += text + " "

        # Process each word in the sentence
        for word in i.words:
            word_data = {
                "word": word.word.strip(),
                "start": word.start,
                "end": word.end
            }

            # Append word timestamps to the sentence's word list
            sentence_timestamp[sentence_id]["words"].append(word_data)

            # Optionally, add the word data to the global words_timestamp list
            words_timestamp.append(word_data)

    return sentence_timestamp, words_timestamp, speech_to_text

def combine_word_segments(words_timestamp, max_words_per_subtitle=8, min_silence_between_words=0.5):
    if max_words_per_subtitle<=1:
        max_words_per_subtitle=1
    before_translate = {}
    id = 1
    text = ""
    start = None
    end = None
    word_count = 0
    last_end_time = None

    for i in words_timestamp:
        try:
            word = i['word']
            word_start = i['start']
            word_end = i['end']

            # Check for sentence-ending punctuation
            is_end_of_sentence = word.endswith(('.', '?', '!'))

            # Check for conditions to create a new subtitle
            if ((last_end_time is not None and word_start - last_end_time > min_silence_between_words)
                or word_count >= max_words_per_subtitle
                or is_end_of_sentence):

                # Store the previous subtitle if there's any
                if text:
                    before_translate[id] = {
                        "text": text,
                        "start": start,
                        "end": end
                    }
                    id += 1

                # Reset for the new subtitle segment
                text = word
                start = word_start  # Set the start time for the new subtitle
                word_count = 1
            else:
                if word_count == 0:  # First word in the subtitle
                    start = word_start  # Ensure the start time is set
                text += " " + word
                word_count += 1

            end = word_end  # Update the end timestamp
            last_end_time = word_end  # Update the last end timestamp

        except KeyError as e:
            print(f"KeyError: {e} - Skipping word")
            pass

    # After the loop, make sure to add the last subtitle segment
    if text:
        before_translate[id] = {
            "text": text,
            "start": start,
            "end": end
        }

    return before_translate

def custom_word_segments(words_timestamp, min_silence_between_words=0.3, max_characters_per_subtitle=17):
    before_translate = []
    id = 1
    text = ""
    start = None
    end = None
    last_end_time = None

    i = 0
    while i < len(words_timestamp):
        word = words_timestamp[i]['word']
        word_start = words_timestamp[i]['start']
        word_end = words_timestamp[i]['end']

        # Look ahead to check if the next word (i+1) starts with a hyphen
        if i + 1 < len(words_timestamp) and words_timestamp[i + 1]['word'].startswith("-"):
            # Combine the current word and the next word (i, i+1) if next word starts with a hyphen
            combined_text = word + words_timestamp[i + 1]['word'][:]  # Skip the hyphen and combine
            combined_start_time = word_start
            combined_end_time = words_timestamp[i + 1]['end']

            i += 1  # Skip the next word (i+1) since it has been combined

            # Look ahead for the next non-hyphenated word, check further if needed (i+2, i+3, etc.)
            while i + 1 < len(words_timestamp) and words_timestamp[i + 1]['word'].startswith("-"):
                combined_text += words_timestamp[i + 1]['word'][:]  # Add word excluding hyphen
                combined_end_time = words_timestamp[i + 1]['end']
                i += 1  # Skip the next hyphenated word

        else:
            # No hyphen at the next word, just take the current word
            combined_text = word
            combined_start_time = word_start
            combined_end_time = word_end

        # Check if the combined text exceeds the maximum character limit
        if len(text) + len(combined_text) > max_characters_per_subtitle:
            # If accumulated text is non-empty, store it as a subtitle
            if text:
                before_translate.append({
                    "word": text.strip(),
                    "start": start,
                    "end": end
                })
                id += 1
            # Start a new subtitle with the combined text
            text = combined_text
            start = combined_start_time
        else:
            # Accumulate text
            if not text:
                start = combined_start_time
            text += " " + combined_text

        # Update the end timestamp
        end = combined_end_time
        last_end_time = end

        # Move to the next word
        i += 1

    # Add the final subtitle segment if text is not empty
    if text:
        before_translate.append({
            "word": text.strip(),
            "start": start,
            "end": end
        })

    return before_translate



def convert_time_to_srt_format(seconds):
    """ Convert seconds to SRT time format (HH:MM:SS,ms) """
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    secs = int(seconds % 60)
    milliseconds = int((seconds - int(seconds)) * 1000)
    return f"{hours:02}:{minutes:02}:{secs:02},{milliseconds:03}"
def write_subtitles_to_file(subtitles, filename="subtitles.srt"):

    # Open the file with UTF-8 encoding
    with open(filename, 'w', encoding='utf-8') as f:
        for id, entry in subtitles.items():
            # Write the subtitle index
            f.write(f"{id}\n")
            if entry['start'] is None or entry['end'] is None:
              print(id)
            # Write the start and end time in SRT format
            start_time = convert_time_to_srt_format(entry['start'])
            end_time = convert_time_to_srt_format(entry['end'])
            f.write(f"{start_time} --> {end_time}\n")

            # Write the text and speaker information
            f.write(f"{entry['text']}\n\n")


def word_level_srt(words_timestamp, srt_path="world_level_subtitle.srt",shorts=False):
    punctuation_pattern = re.compile(r'[.,!?;:"\–—_~^+*|]')
    with open(srt_path, 'w', encoding='utf-8') as srt_file:
        for i, word_info in enumerate(words_timestamp, start=1):
            start_time = convert_time_to_srt_format(word_info['start'])
            end_time = convert_time_to_srt_format(word_info['end'])
            word=word_info['word']
            word =re.sub(punctuation_pattern, '', word)
            if word.strip() == 'i':
                word = "I"
            if shorts==False:
              word=word.replace("-","")
            srt_file.write(f"{i}\n{start_time} --> {end_time}\n{word}\n\n")


def generate_srt_from_sentences(sentence_timestamp, srt_path="default_subtitle.srt"):
    with open(srt_path, 'w', encoding='utf-8') as srt_file:
        for index, sentence in enumerate(sentence_timestamp):
            start_time = convert_time_to_srt_format(sentence['start'])
            end_time = convert_time_to_srt_format(sentence['end'])
            srt_file.write(f"{index + 1}\n{start_time} --> {end_time}\n{sentence['text']}\n\n")

def get_audio_file(uploaded_file):
    global temp_folder
    file_path = os.path.join(temp_folder, os.path.basename(uploaded_file))
    file_path=clean_file_name(file_path)
    shutil.copy(uploaded_file, file_path)
    return file_path

def whisper_subtitle(uploaded_file,Source_Language,max_words_per_subtitle=8):
  global language_dict,base_path,subtitle_folder
  #Load model
  if torch.cuda.is_available():
      # If CUDA is available, use GPU with float16 precision
      device = "cuda"
      compute_type = "float16"
      # compute_type="int8_float16"
  else:
      # If CUDA is not available, use CPU with int8 precision
      device = "cpu"
      compute_type = "int8"
  faster_whisper_model = WhisperModel("deepdml/faster-whisper-large-v3-turbo-ct2",device=device, compute_type=compute_type)
  audio_path=get_audio_file(uploaded_file)
  if Source_Language=="Automatic":
      segments,d = faster_whisper_model.transcribe(audio_path, word_timestamps=True)
      lang_code=d.language
      src_lang=get_language_name(lang_code)
  else:
    lang=language_dict[Source_Language]['lang_code']
    segments,d = faster_whisper_model.transcribe(audio_path, word_timestamps=True,language=lang)
    src_lang=Source_Language
      
  sentence_timestamp,words_timestamp,text=format_segments(segments)
  if os.path.exists(audio_path):
    os.remove(audio_path)
  del faster_whisper_model
  gc.collect()
  torch.cuda.empty_cache()
  
  word_segments=combine_word_segments(words_timestamp, max_words_per_subtitle=max_words_per_subtitle, min_silence_between_words=0.5)
  shorts_segments=custom_word_segments(words_timestamp, min_silence_between_words=0.3, max_characters_per_subtitle=17)
  #setup srt file names
  base_name = os.path.basename(uploaded_file).rsplit('.', 1)[0][:30]
  save_name = f"{subtitle_folder}/{base_name}_{src_lang}.srt"
  original_srt_name=clean_file_name(save_name)
  original_txt_name=original_srt_name.replace(".srt",".txt")
  word_level_srt_name=original_srt_name.replace(".srt","_word_level.srt")
  customize_srt_name=original_srt_name.replace(".srt","_customize.srt")
  shorts_srt_name=original_srt_name.replace(".srt","_shorts.srt")
    
  generate_srt_from_sentences(sentence_timestamp, srt_path=original_srt_name)
  word_level_srt(words_timestamp, srt_path=word_level_srt_name)
  word_level_srt(shorts_segments, srt_path=shorts_srt_name,shorts=True)
  write_subtitles_to_file(word_segments, filename=customize_srt_name)
  with open(original_txt_name, 'w', encoding='utf-8') as f1:
    f1.write(text)
  return original_srt_name,customize_srt_name,word_level_srt_name,shorts_srt_name,original_txt_name

#@title Using Gradio Interface
def subtitle_maker(Audio_or_Video_File,Source_Language,max_words_per_subtitle):
  try:
    default_srt_path,customize_srt_path,word_level_srt_path,shorts_srt_name,text_path=whisper_subtitle(Audio_or_Video_File,Source_Language,max_words_per_subtitle=max_words_per_subtitle)
  except Exception as e:
    print(f"Error in whisper_subtitle: {e}")
    default_srt_path,customize_srt_path,word_level_srt_path,shorts_srt_name,text_path=None,None,None,None,None
  return default_srt_path,customize_srt_path,word_level_srt_path,shorts_srt_name,text_path





import gradio as gr
import click

base_path="."
subtitle_folder=f"{base_path}/generated_subtitle"
temp_folder = f"{base_path}/subtitle_audio"

if not os.path.exists(subtitle_folder):
    os.makedirs(subtitle_folder, exist_ok=True)
if not os.path.exists(temp_folder):
    os.makedirs(temp_folder, exist_ok=True)
    
source_lang_list = ['Automatic']
available_language=language_dict.keys()
source_lang_list.extend(available_language)  



@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
    description = """**Note**: Avoid uploading large video files. Instead, upload the audio from the video for faster processing.
    You can find the model at [faster-whisper-large-v3-turbo-ct2](https://huggingface.co/deepdml/faster-whisper-large-v3-turbo-ct2)"""
    # Define Gradio inputs and outputs
    gradio_inputs = [
        gr.File(label="Upload Audio or Video File"),
        gr.Dropdown(label="Language", choices=source_lang_list, value="Automatic"),
        gr.Number(label="Max Word Per Subtitle Segment [Useful for Vertical Videos]", value=8)
    ]
    
    gradio_outputs = [
        gr.File(label="Default SRT File", show_label=True),
        gr.File(label="Customize SRT File", show_label=True),
        gr.File(label="Word Level SRT File", show_label=True),
        gr.File(label="SRT File For Shorts", show_label=True),
        gr.File(label="Text File", show_label=True)
    ]

    # Create Gradio interface
    demo = gr.Interface(fn=subtitle_maker, inputs=gradio_inputs, outputs=gradio_outputs, title="Auto Subtitle Generator Using Whisper-Large-V3-Turbo-Ct2",description=description)

    # Launch Gradio with command-line options
    demo.queue().launch(debug=debug, share=share)
if __name__ == "__main__":
    main()