Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
from ormbg import ORMBG | |
from PIL import Image | |
import requests | |
model_path = "ormbg.pth" | |
net = ORMBG() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
net.to(device) | |
if torch.cuda.is_available(): | |
net.load_state_dict(torch.load(model_path)) | |
net = net.cuda() | |
else: | |
net.load_state_dict(torch.load(model_path, map_location="cpu")) | |
net.eval() | |
def resize_image(image): | |
image = image.convert("RGB") | |
model_input_size = (1024, 1024) | |
image = image.resize(model_input_size, Image.BILINEAR) | |
return image | |
def inference(image): | |
orig_image = image | |
w, h = orig_image.size | |
image = resize_image(orig_image) | |
im_np = np.array(image) | |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = torch.unsqueeze(im_tensor, 0) | |
im_tensor = torch.divide(im_tensor, 255.0) | |
if torch.cuda.is_available(): | |
im_tensor = im_tensor.cuda() | |
result = net(im_tensor) | |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) | |
pil_im = Image.fromarray(np.squeeze(im_array)) | |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) | |
new_im.paste(orig_image, mask=pil_im) | |
return new_im | |
# Ссылка на файл CSS | |
css_url = "https://neurixyufi-aihub.static.hf.space/style.css" | |
# Получение CSS по ссылке | |
response = requests.get(css_url) | |
css = response.text + "h1{text-align:center}" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Удаление фона") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Загрузите изображение с фоном", type="pil") | |
submit_button = gr.Button("Удалить фон") | |
with gr.Column(): | |
output_image = gr.Image(label="Изображение без фона", type="pil") | |
submit_button.click( | |
fn=inference, | |
inputs=input_image, | |
outputs=output_image, | |
concurrency_limit=10 | |
) | |
if __name__ == "__main__": | |
demo.launch(share=False) | |