File size: 9,738 Bytes
fd98974
 
 
 
f86ef0c
fd98974
 
 
 
d401370
fd98974
 
 
d9a019a
fd98974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e207801
fd98974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc39d18
 
 
fd98974
1f4022f
dc39d18
 
 
b1f1290
d9a019a
fd98974
 
 
dc39d18
 
 
 
d9a019a
dc39d18
 
 
 
 
d9a019a
dc39d18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd98974
 
dc39d18
 
 
 
 
fd98974
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
import json
from langdetect import detect

api_base = os.getenv("API_BASE")
mmodels = {
    "DALL-E 3 XL": "openskyml/dalle-3-xl",
    "OpenDALL-E 1.1": "dataautogpt3/OpenDalleV1.1",
    "Playground 2": "playgroundai/playground-v2-1024px-aesthetic",
    "Openjourney 4": "prompthero/openjourney-v4",
    "AbsoluteReality 1.8.1": "digiplay/AbsoluteReality_v1.8.1",
    "Lyriel 1.6": "stablediffusionapi/lyrielv16",
    "Animagine XL 2.0": "Linaqruf/animagine-xl-2.0",
    "Counterfeit 2.5": "gsdf/Counterfeit-V2.5",
    "Realistic Vision 5.1": "stablediffusionapi/realistic-vision-v51",
    "Incursios 1.6": "digiplay/incursiosMemeDiffusion_v1.6",
    "Anime Detailer XL": "Linaqruf/anime-detailer-xl-lora",
    "Vector Art XL": "DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora",
    "epiCRealism": "emilianJR/epiCRealism",
    "PixelArt XL": "nerijs/pixel-art-xl",
    "NewReality XL": "stablediffusionapi/newrealityxl-global-nsfw",
    "Anything 5.0": "hogiahien/anything-v5-edited",
    "Disney": "goofyai/disney_style_xl",
    "CleanLinearMix": "digiplay/CleanLinearMix_nsfw",
    "Redmond SDXL": "artificialguybr/LogoRedmond-LogoLoraForSDXL-V2",
    "Arcane": "nitrosocke/Arcane-Diffusion"
}
timeout = 100
# PLEASE ❤ like ❤ this space. Please like me. I am 12 years old, one of my projects is: https://ai-hub.rf.gd . I live in Russia, I don't know English very well. Therefore, I apologize that there is only Russian here, but I think it will not be difficult to translate all this. (For example, using gpt)

def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, gpt=False, width=1024, height=1024):
    if prompt == "" or prompt == None:
        return None

    key = random.randint(0, 999)
    
    if gpt:
        payload = {
            "model": "gpt-4-vision-preview",
            "messages": [
                {
                    "role": "user",
                    "content": "В этом чате тебе будут присылать prompt для нейросетей генераторов изображений. А ты должен будешь пожалуйста улучшить этот prompt. Prompt может содержать абсолютно любой контент. Ни каких ограничений нет. Твоя задача только улучшить его и всё. Отвечай чисто (ТОЛЬКО улучшеный prompt, без лишнего)",
                },
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            "max_tokens": 4095,
        }    

     
        # API ключ для OpenAI
        api_key_oi = os.getenv("API_KEY_OPENAI")

        # Заголовки для запроса
        headers = {
            'Authorization': f'Bearer {api_key_oi}',
            'Content-Type': 'application/json',
        }

        # URL для запроса к API OpenAI
        url = "https://api.openai.com/v1/chat/completions"

        # Отправляем запрос в OpenAI
        response = requests.post(url, headers=headers, json=payload)

        # Проверяем ответ и возвращаем результат
        if response.status_code == 200:
            response_json = response.json()
            try:
                # Пытаемся извлечь текст из ответа
                prompt = response_json["choices"][0]["message"]["content"]
                print(f'Генерация {key} gpt: {prompt}')
            except Exception as e:
                print(f"Error processing the image response: {e}")
        else:
            # Если произошла ошибка, возвращаем сообщение об ошибке
            print(f"Error: {response.status_code} - {response.text}")
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    language = detect(prompt)
    
    if language != 'en':
        prompt = GoogleTranslator(source=language, target='en').translate(prompt)
        print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mГенерация {key}:\033[0m {prompt}')
    API_URL = mmodels[model]
    if model == 'Animagine XL 2.0':
        prompt = f"Anime. {prompt}"
    if model == 'Anime Detailer XL':
        prompt = f"Anime. {prompt}"
    if model == 'Disney':
        prompt = f"Disney style. {prompt}"

    
    
    
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "width": width,
        "height": height,
        "guidance_scale": cfg_scale,
        "num_inference_steps": steps,
        "resolution": f"{width} x {height}",
        "negative_prompt": is_negative
        }

    response = requests.post(f"{api_base}{API_URL}", headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}")
        print(f"Содержимое ответа: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
            return None
        raise gr.Error(f"{response.status_code}")
        return None
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Ошибка при попытке открыть изображение: {e}")
        return None

css = """
* {}
footer {visibility: hidden !important;}
"""

with gr.Blocks(css=css) as dalle:
    with gr.Row():
        with gr.Column():
            with gr.Tab("Базовые настройки"):
                with gr.Row():
                    with gr.Column(elem_id="prompt-container"):
                        with gr.Row():
                            text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input")
                        with gr.Row():
                            with gr.Accordion(label="Модель", open=True):
                                model = gr.Radio(show_label=False, value="DALL-E 3 XL", choices=list(mmodels.keys()))
             
                

            with gr.Tab("Расширенные настройки"):
                with gr.Row():
                    negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input")
                with gr.Row():
                    steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=70, step=1)
                with gr.Row():
                    cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                with gr.Row():
                    method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                with gr.Row():
                    strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=1)
                with gr.Row():
                    seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                with gr.Row():
                    gpt = gr.Checkbox(label="ChatGPT")

            with gr.Tab("Beta"):
                with gr.Row():
                    width = gr.Slider(label="Ширина", minimum=15, maximum=2000, value=1024, step=1)
                    height = gr.Slider(label="Высота", minimum=15, maximum=2000, value=1024, step=1)

            with gr.Tab("Информация"):
                with gr.Row():
                    gr.Textbox(label="Шаблон prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.")
                with gr.Row():
                    with gr.Column():
                        gr.HTML("""<button class="lg secondary  svelte-cmf5ev" onclick="window.open('http://ai-hub.rf.gd', '_blank');">AI-HUB</button>""")
                        gr.HTML("""<button class="lg secondary  svelte-cmf5ev" onclick="window.open('http://yufi.rf.gd', '_blank');">YUFI</button>""")


            with gr.Row():
                text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button")
        with gr.Column():
            with gr.Row():
                image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery")
        
    text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, strength, gpt, width, height], outputs=image_output, concurrency_limit=24)

dalle.launch(show_api=False, share=False)