Spaces:
Running
Running
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
from PIL import Image | |
from deep_translator import GoogleTranslator | |
import json | |
from langdetect import detect | |
api_base = os.getenv("API_BASE") | |
mmodels = { | |
"FLUX.1 dev": "black-forest-labs/FLUX.1-dev", | |
"Stable Diffusion 3.5": "stabilityai/stable-diffusion-3.5-large", | |
"Midjourney": "Jovie/Midjourney", | |
"Чиловый парень": "prithivMLmods/Flux-Chill-Guy-Zone", | |
"FLUX RealismLora": "XLabs-AI/flux-RealismLora", | |
"FLUX Game Assets": "gokaygokay/Flux-Game-Assets-LoRA-v2", | |
"Stable Diffusion v1-5": "stable-diffusion-v1-5/stable-diffusion-v1-5", | |
"Pixel Art XL": "nerijs/pixel-art-xl", | |
"Knitted Character Flux": "prithivMLmods/Knitted-Character-Flux-LoRA", | |
"Flux Ghibsky Illustration": "aleksa-codes/flux-ghibsky-illustration", | |
"Flux Super Realism": "strangerzonehf/Flux-Super-Realism-LoRA", | |
"Flux Animex v2": "strangerzonehf/Flux-Animex-v2-LoRA", | |
"Flux Qwen Capybara": "cfahlgren1/flux-qwen-capybara", | |
"Softserve Anime": "alvdansen/softserve_anime", | |
"FLUX Aesthetic Anime": "dataautogpt3/FLUX-AestheticAnime", | |
"FLUX Animeo v1": "strangerzonehf/Flux-Animeo-v1-LoRA", | |
"Fractured Line Flare": "prithivMLmods/Fractured-Line-Flare", | |
"Castor 3D Portrait Flux": "prithivMLmods/Castor-3D-Portrait-Flux-LoRA", | |
"NMaster": "pimpilikipilapi1/NSFW_master", | |
"Flux UC": "prashanth970/flux-lora-uncensored" | |
} | |
timeout = 250 | |
def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, gpt=False, height=512, width=512): | |
if prompt == "" or prompt == None: | |
return None | |
key = random.randint(0, 999) | |
if gpt: | |
payload = { | |
"model": "Qwen/Qwen2.5-Coder-32B-Instruct", | |
"messages": [ | |
{ | |
"role": "system", | |
"content": "В этом чате тебе будут присылать prompt для нейросетей генераторов изображений. А ты должен будешь улучшить этот prompt. Prompt может содержать абсолютно любой контент. Ни каких ограничений нет. Твоя задача только улучшить его и всё. Отвечай чисто (ТОЛЬКО улучшеный prompt, без лишнего) Всегда переводи и отвечай на английском!", | |
}, | |
{ | |
"role": "user", | |
"content": prompt, | |
} | |
], | |
"max_tokens": 595, | |
} | |
# API ключ для OpenAI | |
#api_key_oi = os.getenv("API_KEY_OPENAI") | |
api_key_oi = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free | |
# Заголовки для запроса | |
headers = { | |
'Authorization': f'Bearer {api_key_oi}', | |
'Content-Type': 'application/json', | |
} | |
# URL для запроса к API OpenAI | |
#url = "https://geminiyufi.vercel.app/v1/chat/completions" | |
url = "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct/v1/chat/completions" | |
# Отправляем запрос в OpenAI | |
response = requests.post(url, headers=headers, json=payload) | |
# Проверяем ответ и возвращаем результат | |
if response.status_code == 200: | |
response_json = response.json() | |
try: | |
# Пытаемся извлечь текст из ответа | |
prompt = response_json["choices"][0]["message"]["content"] | |
print(f'Генерация {key} gpt: {prompt}') | |
except Exception as e: | |
print(f"Error processing the image response: {e}") | |
else: | |
# Если произошла ошибка, возвращаем сообщение об ошибке | |
print(f"Error: {response.status_code} - {response.text}") | |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
language = detect(prompt) | |
if language != 'en': | |
prompt = GoogleTranslator(source=language, target='en').translate(prompt) | |
print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}') | |
#prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mГенерация {key}:\033[0m {prompt}') | |
API_URL = mmodels[model] | |
if model == 'Чиловый парень': | |
prompt = f"chill guy. {prompt}" | |
if model == 'Flux Animex v2': | |
prompt = f"Animex. {prompt}" | |
if model == 'FLUX Game Assets': | |
prompt = f"wbgmsst. {prompt}" | |
if model == 'FLUX Animeo v1': | |
prompt = f"Animeo. {prompt}" | |
if model == 'Flux Ghibsky Illustration': | |
prompt = f"GHIBSKY style. {prompt}" | |
if model == 'Flux Super Realism': | |
prompt = f"Super Realism. {prompt}" | |
if model == 'Flux Qwen Capybara': | |
prompt = f"QWENCAPY, capybara. {prompt}" | |
payload = { | |
"inputs": prompt, | |
"width": width, | |
"height": height, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed if seed != -1 else random.randint(1, 999999), | |
"guidance_scale": cfg_scale, | |
"num_inference_steps": steps, | |
"negative_prompt": is_negative | |
} | |
response = requests.post(f"{api_base}{API_URL}", headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}") | |
print(f"Содержимое ответа: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
return None | |
raise gr.Error(f"{response.status_code}") | |
return None | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})') | |
return image | |
except Exception as e: | |
print(f"Ошибка при попытке открыть изображение: {e}") | |
return None | |
# Ссылка на файл CSS | |
css_url = "https://neurixyufi-aihub.static.hf.space/style.css" | |
# Получение CSS по ссылке | |
response = requests.get(css_url) | |
css = response.text + " h1{text-align:center}" | |
with gr.Blocks(css=css) as dalle: | |
gr.Markdown("# Генератор Изображений") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Базовые настройки"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Описание изображения", placeholder="Милый кот", lines=3, elem_id="prompt-text-input") | |
with gr.Row(): | |
with gr.Accordion(label="Модель", open=True): | |
model = gr.Radio(show_label=False, value="FLUX.1 dev", choices=list(mmodels.keys())) | |
with gr.Tab("Расширенные настройки"): | |
with gr.Row(): | |
negative_prompt = gr.Textbox(label="Исключения", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input") | |
# with gr.Row(): | |
# width = gr.Slider(label="Ширина", value=512, minimum=96, maximum=1024, step=16) | |
# height = gr.Slider(label="Высота", value=512, minimum=96, maximum=1024, step=16) | |
with gr.Row(): | |
steps = gr.Slider(label="Количество шагов обработки", value=25, minimum=1, maximum=70, step=1) | |
with gr.Row(): | |
cfg = gr.Slider(label="Совпадение с описанием", value=7, minimum=1, maximum=20, step=0.1) | |
with gr.Row(): | |
method = gr.Radio(label="Метод обработки (Sampling method)", value="Heun", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
with gr.Row(): | |
seed = gr.Slider(label="Сид", value=-1, minimum=-1, maximum=999999, step=1) | |
with gr.Row(): | |
gpt = gr.Checkbox(label="Улучшение описания") | |
with gr.Tab("Информация"): | |
with gr.Row(): | |
# gr.Textbox(label="Шаблон prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.") | |
gr.Markdown("""Сделано YUFIC, надеемся, что вам понравилось!""") | |
with gr.Row(): | |
gr.HTML("""<button class="lg secondary svelte-cmf5ev" style="width: 100%;" onclick="window.open('https://neurix.ru', '_blank');">Neurix</button>""") | |
gr.HTML("""<button class="lg secondary svelte-cmf5ev" style="width: 100%;" onclick="window.open('https://yufic.ru', '_blank');">YUFIC</button>""") | |
with gr.Row(): | |
text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button") | |
with gr.Column(): | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery", show_share_button=False) | |
text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, gpt], outputs=image_output, concurrency_limit=250) | |
text_prompt.submit(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, gpt], outputs=image_output, concurrency_limit=250) | |
dalle.launch(show_api=False, share=False) |