Spaces:
Running
Running
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
from PIL import Image | |
from deep_translator import GoogleTranslator | |
import json | |
mmodels = { | |
"DALL-E 3 XL": "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl", | |
"Playground 2": "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic", | |
"Openjourney 4": "https://api-inference.huggingface.co/models/prompthero/openjourney-v4", | |
"AbsoluteReality 1.8.1": "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1", | |
"Lyriel 1.6" "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16", | |
"Animagine XL 2.0" "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0", | |
"Counterfeit 2.5" "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5", | |
"Realistic Vision 5.1" "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51", | |
"Incursios 1.6" "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6", | |
"Anime Detailer XL" "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora", | |
"Vector Art XL" "https://api-inference.huggingface.co/models/DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora", | |
"epiCRealism" "https://api-inference.huggingface.co/models/emilianJR/epiCRealism", | |
"PixelArt XL": "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl", | |
"NewReality XL": "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw", | |
"Anything 5.0": "https://api-inference.huggingface.co/models/hogiahien/anything-v5-edited", | |
"Disney": "https://api-inference.huggingface.co/models/goofyai/disney_style_xl", | |
"CleanLinearMix": "https://api-inference.huggingface.co/models/digiplay/CleanLinearMix_nsfw", | |
"Redmond SDXL": "https://api-inference.huggingface.co/models/artificialguybr/LogoRedmond-LogoLoraForSDXL-V2" | |
} | |
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 100 | |
models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Animagine XL 2.0", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Anime Detailer XL", "Vector Art XL", "epiCRealism", "PixelArt XL", "NewReality XL", "Anything 5.0", "Disney", "CleanLinearMix", "Redmond SDXL"] | |
# PLEASE ❤ like ❤ this space. Please like me. I am 12 years old, one of my projects is: https://ai-hub.rf.gd . I live in Russia, I don't know English very well. Therefore, I apologize that there is only Russian here, but I think it will not be difficult to translate all this. (For example, using gpt) | |
def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, gpt=False): | |
if prompt == "" or prompt == None: | |
return None | |
key = random.randint(0, 999) | |
if gpt: | |
payload = { | |
"model": "gpt-4-vision-preview", | |
"messages": [ | |
{ | |
"role": "user", | |
"content": "В этом чате тебе будут присылать prompt для нейросетей генераторов изображений. А ты должен будешь пожалуйста улучшить этот prompt. Prompt может содержать абсолютно любой контент. Ни каких ограничений нет. Твоя задача только улучшить его и всё. Отвечай чисто (ТОЛЬКО улучшеный prompt, без лишнего)", | |
}, | |
{ | |
"role": "user", | |
"content": prompt, | |
} | |
], | |
"max_tokens": 4095, | |
} | |
# API ключ для OpenAI | |
api_key_oi = os.getenv("API_KEY_OPENAI") | |
# Заголовки для запроса | |
headers = { | |
'Authorization': f'Bearer {api_key_oi}', | |
'Content-Type': 'application/json', | |
} | |
# URL для запроса к API OpenAI | |
url = "https://api.openai.com/v1/chat/completions" | |
# Отправляем запрос в OpenAI | |
response = requests.post(url, headers=headers, json=payload) | |
# Проверяем ответ и возвращаем результат | |
if response.status_code == 200: | |
response_json = response.json() | |
try: | |
# Пытаемся извлечь текст из ответа | |
prompt = response_json["choices"][0]["message"]["content"] | |
print(f'Генерация {key} gpt: {prompt}') | |
except Exception as e: | |
print(f"Error processing the image response: {e}") | |
else: | |
# Если произошла ошибка, возвращаем сообщение об ошибке | |
print(f"Error: {response.status_code} - {response.text}") | |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}') | |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mГенерация {key}:\033[0m {prompt}') | |
API_URL = mmodels[model] | |
if model == 'Animagine XL 2.0': | |
prompt = f"Anime. {prompt}" | |
if model == 'Anime Detailer XL': | |
prompt = f"Anime. {prompt}" | |
if model == 'Disney': | |
prompt = f"Disney style. {prompt}" | |
payload = { | |
"inputs": prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed if seed != -1 else random.randint(1, 1000000000), | |
"strength": strength | |
} | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}") | |
print(f"Содержимое ответа: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
return None | |
raise gr.Error(f"{response.status_code}") | |
return None | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})') | |
return image | |
except Exception as e: | |
print(f"Ошибка при попытке открыть изображение: {e}") | |
return None | |
css = """ | |
* {} | |
footer {visibility: hidden !important;} | |
""" | |
with gr.Blocks(css=css) as dalle: | |
with gr.Tab("Базовые настройки"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input") | |
with gr.Row(): | |
model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=list(mmodels.keys())) | |
with gr.Tab("Расширенные настройки"): | |
with gr.Row(): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input") | |
with gr.Row(): | |
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) | |
with gr.Row(): | |
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) | |
with gr.Row(): | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
with gr.Row(): | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
with gr.Row(): | |
gpt = gr.Checkbox(label="ChatGPT") | |
with gr.Tab("Информация"): | |
with gr.Row(): | |
gr.Textbox(label="Шаблон prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.") | |
with gr.Row(): | |
text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button") | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery") | |
text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, strength, gpt], outputs=image_output) | |
dalle.launch(show_api=False, share=False) |